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SECTION I 

INTRODUCTION 

This investigation Is concerned with the prediction of the nonlinear 

response of reinforced concrete structures, including member failures and 

structural collapse, to static and dynamic loads. The computer program 

SINCF.R, the product of this investigation, provides the tool for this 

prediction. This report describes the mathematical models and the solution 

process which form the basis of SINGER. 

1.1 BACKGROUND 

Since it was desired to represent the structure by a discrete model 

composed of "gross elements" it was natural to select the finite element 

method to model the structure.  However, the selection of the solution 

process represented a pivotal decision. Two methods were given serious 

consideration:  the step-by-step (STEP) approach, an equilibrium approach 

in which the structure is represented by a stiffness matrix; and the 

minimization (MIN) approach, an energy approach in which the structure 

is characterized by a work function.  In both approaches, the solution 

process initiates at a point where the state of the system is known 

and proceeds along discrete points of the equilibrium path (motion) of 

the system. 

The STEP approach has been used extensively in the analysis of non- 

linear structures and is well documented [e.g., 14,17]*. The central idea 

of the STEP approach is contained in Newton's method of successive ap- 

proximations to a real root [151. It is Illustrated In Figure la, 

which depicts the nonlinear equilibrium path of a one-degree-of-freedom 

Numbers in brackets designate references 



sys'tiR.,     Tli" par!-,   fs  de.tnui  ': /   i h-   fqu( j ihrir.t.  "qnatlon 

P '   tu) (1.1) 

w* TO  p  i.   the  api'l inl   : (u'd,   ■   i     ' li,1   : "55ti -itf   force   (a  nonlinear functloi 

In \) .   and x .ii'no^es   the- diup l.-ji . Mint   tio"'  rhc  Lnlo.i^icd  scale.    The 

•.onditl^n ot   «qu'1 fbr«nr.;  < 01 v'.[>■.>■ '.ir.f.  to a  if ■lific   lo.id p Is 

AP » p -   f(x)   -  0 (1.2) 

whe'L  A [.  dunolfS   Lho   >^ ha Ian. cd   L«/atJ.     'i'lif   r .ii'j'.i'nt i :il   stlifness  at  any 

pi'irt   of   the equt llbriur.  patl'  i    def'i.ed b;. 

d."(x.) 
k. =     -   r--- (1.3) 

1 i!x 

If  Ntw: MI'S  nroce1;;;   is  .•■•jplied   to  rht- r:    '  tri'.J   s-olutiun,   x  ,  and 
n 

A,,    = ~ -   t'Cx  )   r 0 (1.4) 
n       ' !■ 

the correction to  x    is 
n 

n n n 

Thus,  the n + 1       rrial   solution  Is 

x =     x     *       x (1.6) 
n+l n n 

This process is continued  until   th,   'mhaiauc.d  force "p Is sufficiently 

small. 

Two modlficatiors of this proifss are obtained by using the constant 

dtitfneHs coefficient 

k  = ^ (1.7) 
o     dx 

during the entire iterative process (see Figure lb)  or by combining the 

constant and vr-rlable stiffness coefficients in the solution process [17]. 

The extension of Newton's method to a system with multi-degrees-of- 

freedom is known as the Newton-Raphson method. On the basis of the finite 

U 
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(a)  VARIABLE  STIFFNESS 

p=f(x) 

(b) CONSTANT  STIFFNESS 

FIG. I.     STEP PROCESS 
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element method, the governing equations of equilibrium can be expressed 

In the form [17] 

p - /BTüdV (1.8) 
V 

where 

c - Bx (1.9) 

and 

6E - B6x (1.10) 

In Equations 1.8, 1.9, and 1.10, p and x represent the external generalized 

force and displacement vectors, respectively; a and c denote the stress and 

strain vectors, respectively (the constitutive laws may be nonlinear); 

B is th- compatibility matrix which may depend on x, In which case 

B »• B; 6 signifies a virtual variation; and V denotes the volume of 

the system. Again the condition of equilibrium for a specific force 

vector p Is 

Ap = p - /BTadV - 0 (1.11) 
V 

where Ap is the unbalanced force vector. Analogous to the Newton process, 

the correction to the n  trial solution, x , is 
n 

Axn = KT"
1Apn (1.12) 

st rrid  the n + 1      trial solution Is defined by 

x j.  = x      + Ax (1.13) 
n+1       n n 

The tangent stiffness matrix IC, In Equation 1.12 Is obtained by forming 

a virtual variation of Equation 1.8 with respect to x; the result can be 

expressed in the form 

6p = I^ox • (1.14) 



The unbalanced f01 cc vector c:o responding to any tria J solution is 

evaluated or. the basis of Equation 1.11. "he solution process is 

continued untii the unbalanced fnrees tre sufficiently small. The 

modifications of Che iN .-wton process are also employed in the Newton-

Raph -or. process. 

The MIN approach is based on the property that the work function 

[7] of the svsten assumes a relative minimum at a stable equilibrium 

state. Accordingly, a desired equilibrium state is found by 

minimization of the work function. Function minimization is accom-

plished via nonlinear programming techniques. The MIN approach 

has been employed successfully in the analysis of nonlinear structures 

[e.g., 2, 5, 9]. 

The MI*T process, which is discussed in more detail in section 3, 

is illustrated for a two-degree-of-freedom system in Figure 2. The 

work function W is represented by level curves. Function minimization 

is based on a modification of Davidon's method [13]. The search for 

the desired equilibrium state x corresponding to the applied load 

vector p initiates at x in the direction d.. The first trial solution 
o 1 

x^ is obtained by minimizing the function W along the direction d^. A 

new search direction d, is established, and the relative minimum of 

W with respect to is found to be x? (the search directions are defined 

by transformations of the gradients of the work function [13]). The 

iterative process is continued until the components of the gradient 

of the work function, which correspond to the unbalanced forces, are 

sufficiently small. 

It was decided that both the STEP and MIN approach provide a 

8 
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satisfactory basis for the proposed modeling and solution process. The 

Final selection of the MIN approach was strongly influenced by the fol-

lowing factors: 

In the MIN process, the search for an equilibrium state is always 

based on the actual state of the system corresponding to an assumed 

displacement configuration. The STEP approach is a quasi-linear 

approach in which every trial solution is based on the stiffness 

properties of the system at the beginning of the iteration (Figure 1). 

Hence, in the MIN approach, decisions are always based on the actual 

state of the system. 

Depending on the choice of the minimization algorithm, substantial 

storage space savings can be achieved with the MIN process since 

the structure is represented by a scalar function. However, the 

liavidon algorithm [13) does require storage space comparable to 

the STEP process. 

The computation and "inversion" of the tangent stiffness matrix in 

the Newton-Raphson process (Equation 1.12) requires a significant 

amount of computational effort at each cycle. The alternate approach 

of a constant stiffness matrix converges only for certain types of 

nonlinearities [14]. Hence, at least a combination of the constant 

and variable stiffness matrices is required. 

1.2 PURPOSE AND SCOPE 

The function of the computer program SINGER is to predict the be-

havior of plane skeletal reinforced concrete structures in their environ-

10 



ments.    Of particular Interest Is the nonlinear transient response including 

the possibility of element failures and structural collapse. 

SINGER Is Intended to serve as a tool for the improvement and devel- 

opment of  techniques for the assessment of existing protective structures, 

the design of new systems,  and the development of motion environment 

criteria for Internal systems of protective structures. 

1.3    METHODOLOGY 

The prediction of the performance of the structure in its euviron- 

ment is based on the response of a mathematical model of the structure to 

actions, which simulate the environment.    The analysis process comprises 

three principal tasks: 

1. The formulations of actions,  the mathematical models of the 

environment. 

2. The development of a mathematical model of the structure. 

3. The formulation of the solution process. 

The actions consist of the self-weight of the structure,  distributed 

and concentrated static and dynamic loads, Inertia forces, and support 

motions. 

The structure is represented by an assemblage of discrete line ele- 

ments and springs Interconnected at a finite number of points.    The line 

elements are models of straight,  prismatic, reinforced concrete members 

whose longitudinal plane of symmetry corresponds to the plane of loading. 

The line element Is discretized via the finite element method;   the inter- 

nal energy, which characterizes the state of the element,  is a function 

of the element distortion components  (three relative end-displacements 

11 



and one relative internal-displacement). Springs represent models of 

joints with partial releases. A concentrated mass is assigned to each 

degree of freedom of the assemblage. Energy dissipation resulting from 

inelastic behavior accounts for structural damping. 

The line elements admit geometric and physical nonlinearities. 

Geometric nonlinearities are induced by the coupling of flexural and 

axial distortions and the formulation of equilibrium for the deformed 

state of the assemblage. Physical nonlinearities are caused by non-

linear constitutive (stress-strain) laws. The springs are assumed to 

behave linearly. 

The behavior of the element is modeled up to the limit of contin-

uous change of state, defined as fracture (e.g., crushing of the compres-

sion block constitutes element failure; however, minor discontinuties 

such as spelling of the concrete cover are modeled). 

In the linear domain, the state of the system is completely defined 

by the generalized coordinates which consist of nodal displacements, 

relative internal element-displacements, and relative release-displace-

ments. In the nonlinear range, the generalized coordinates must be 

related to the motion (equilibrium path) of the system to define the 

state of the system. The origin of the generalized coordinates cor-

responds to the unstrained state of the system, termed the initial state. 

The response of the system to dynamic actions is determined at a 

discrete number of points in time. The solution process is a closed 

iterative process within two successive points in time, the time step. 

The time function of each generalized coordinate is approximated 

12 



over the time step by a finite power series whose coefficients are ex- 

pressed In terms of three known Initial conditions, the displacement, 

velocity,  and acceleration at the beginning of the time step,  and one 

unknown end condition, the displacement at the end of the time step. 

This  representation of the time  function permits one to express  the In- 

ertia forces  at  the end of the time step in  terms of the unknown dis- 

placements.     Consequently,  the state of  the system at the end of the  time 

step can be completely defined in terms of the corresponding generalized 

coordinates.    For this purpose a work function Is Introduced,  a scalar 

function of the generalized coordinates, which contains implicitly all 

the forces acting on the system (applied, inertia, Internal).    The de- 

sired system configuration at the end of the time step is obtained by 

minimization of  the work function, which assumes a relative minimum at 

the dynamic equilibrium state.    The minimization process is a search 

process in which a system configuration is assumed, the inertia forces 

are computed and added to the applied external forces,  the work function 

is  formulated  and tested for a relative minimum.    With the aid of  the 

Information gained In this test,  a new configuration Is found,  and the 

process is repeated until the equilibrium imbalance at the end of the 

time step is sufficiently small. 

This solution process can also be employed to obtain the nonlinear 

response to static loads.    Aside from the inertia forces,  the difference 

between the static and dynamic analysis is  conceptual.    Instead of a 

time step,  a load Increment is specified and the corresponding config- 

uration is again obtained by work function minimization. 

13 



SECTION 2 

MATHEMATICAL MODELS 

This section presents mathematical models of plane, skeletal, rein-

forced concrete structures and their environments. 

The model of the structure, the system model, is a discrete model 

composed of line elements (models of reinforced concrete beam-columns) 

and springs (models of partial joint releases). The line elements admit 

geometric and physical nonlinearities; they can predict the behavior of 

reinforced concrete members subject to flexural and axial distortions up 

to failure, which is defined as the limit of continuous change of state. 

The state of the element is characterized by its internal energy. The 

springs are restricted to linear behavior. 

The state of the syctem is defined by the work function, a scalar 

function that contains implicitly all the forces acting on the system. 

The work function is uniquely defined in terms of the generalized co-

ordinates, which must be related to the equilibrium path (motion) when 

the system behaves nonlinearly (cf. section 2..2.4). 

Failure criteria are formulated; they define the domain in which 

the models are valid and provide the basis for predicting element fail-

ure ana structural collapse. 

2.1 ACTIONS 

Actions, mathematical models of the environment, consist of the self-

weight of the structure, distributed and concentrated loads, inertia forces, 

and support motions . 

14 



All distributed loads and self-weights are replaced by "equivalent" 

nodal forces [17].  In the linear range of the element, the equivalent 

nodal forces caused by transverse member loads are equal in magnitude 

and opposite In sense to fixed-end forces; this Is a consequence of the 

assumed shape functions (cf. section 2.2.1), which correspond to the 

homogeneous solution of the differential equation of a beam in flexure. 

This property does not exist in the nonlinear range where the discrete 

element forms an approximate representation of the continuum. 

Inertia forces are computed on the basis of lumped masses assigned 

to the nodal degrees-of-freedom. The computation of the lumped masses 

follows the approach described In reference 12 . 

2.2 ELEMENT MODEL 

The reinforced concrete beam-column Is represented by a gross ele- 

ment model. This means that the element forms a one-dimensional contin- 

uum, which is dlscretlzed in the modeling process. 

The initial state of the element Is assumed to be unstrained. Defor- 

mations are governed by the fundamental assumption that plane sections 

remain plane and normal to the deformed reference axis. Consequently, 

the state at any point of the element Is defined by the state of the 

reference axis. Deformations are limited by the assumption that strains 

and rotations are small relative to unity. Axial and flexural deformations 

are modeled explicitly; only a measure of shear distortions and their 

significance is provided. Inelastic deformations are modeled up to 

element failure.  Structural damping is Incorporated through energy dis- 

sipation associated with inelastic behavior. 

The beam-column effect, the coupling of axial and flexural distortions. 

15 



is represented by the correspondsug nonlinear term in the strain-dis-

placement relation. The member-force interactions, which are charac-

terized in the concrete literature by behavior models, are also formu-

lated at the micro level. This is natural since the behavior model, 

a macro model governing the axial load-moment-curvature relations at a 

section, is completely defined by the following section properties: 

the strain state, the constituents of the section, and the corresponding 

constitutive laws. The variability of the neutral axis, a characteristic 

of reinforced concrete beam:-; subjected to axial and f]exural distortions, 

is modeled by admitting axial strair. variations along the reference axis. 

This feature is illustrated in section 2.2.1. 

The state of the element is characterized by its internal energy. 

Conditions of equilibrium are formulated for the assemblege of elements, 

the structural system. The modeling process, passing from the continuum 

co the internal energy expressed in terms of a finite number of distor-

tion components, is depicted schematically in Figure 3 : u and v define 

the deformed reference axis; u is a 4-dimensional element distortion 

vector whose components represent the relative element displacements; x 

and y are the coordinates of a point in the element (Figure 5 ); e and 

o denote strain and stress at a point, respectively; and U signifies the 

internal energy of the element. 

2.2.1 DISCRETIZATION 

The reference axis of the element is depicted in Figure 4 . The 

reference axis must lie in the longitudinal plane of symmetry, the plane 

of bending, of the element, and all reference axes incident at a joint 

16 
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FIG. 5.     ELEMENT SECTIONS 
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must be concurrent.    This eliminates the modeling of Joint eccentricities. 

Moreover,  the reference axis need only be parallel  to a longitudinal edge 

of the beam;  Its location In the longitudinal plane of symmetry Is arbi- 

trary (see Illustrative example on page 20). 

The deformation coordinate axes,  the x, y-axes  In Figure 4    , are 

defined In section 2.3.1.    The transformation of the global joint dis- 

placements Into the element distortion components u.. ,  u», u» Is presented 

In section 2.3.1.    The Internal distortion comprnent« u,,Is prescribed 

directly in the solution process. 

The configuration of the deformed reference axis Is expressed In the 

form 

u(0 - *1(Oü1    +    *4(Oü4 (2.1) 

v(0 - *2(Oü2    +    (t)3U)ü3 (2.2) 

where 

*1 

>2 

21? - 5 (2.3) 

K —2C3 + 3K2 (2.4) 

fj - L(C3 - C2) (2.5) 

^4 
K - 4(-S2 + O (2.6) 

and 

C - x/L (2.7) 

For a linear element satisfying the conditions of the elementary 

flexure theory. Equation 2.2 represents an exact description of the 

transverse flexural deflection v In terms of the relative end-displace- 

ments u.,  u..    For a nonlinear element,  the shape functions ({>„, (K 

19 



provide only an approximate representation of the flexural response. 

The introduction of the internal distortion component in the longi-

tudinal displacement function,Equation 2.1, permits linear variation in 

the normal strain along the reference axis (see Equation 2.11). This 

feature makes it possibJe to describe the strain state corresponding to 

a linearly varying neutral axis with respect to any reference axis in 

che longitudinal plane of symmetry. This property is illustrated in the 

following example. 

Consider the strain state 

2e 
e(x,y) = -e y (1 + —) (2.8) 

° h L 

OL the. beam shown in Figure 6 . The first tern, on the right-hand side 

oi Equation 2.8 represents a constant normal strain induced by axial 

compression, and the second term describes a flexural strain that varies 

linearly with respect to the orthogonal reference axes, x and y; the 

x-axis coincides with the centroidal axis of the beam; h and L denote 

the height and length of the beam, respectively. The neutral axis is 

formed by the straight line passing through points P and Q (Figure 6 ). 

Introduce a reference axis that does not coincide with the centroidal 

axis; e.g., let the location of the reference axis be described by the 

coordinate transformations 

y = y - ̂  , x = x (2.9) 

which places the reference axis a distance h/4 below the centroidal 

axis (Figure 6 ). Substitution of Equation 2.9 into Equation 2.8 

yields 

20 
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•:(x.  y)  = - cn   (y - ~)   -  2 _o y(i + f) (2.10) 

A  compartson 01  Equation.^  2.8 ^ind 2,10 indicates that  the  translation of 

the  refprt'iic? axis causea   the normal strain to vary  linearly along the 

reference .ixis but does not alter the form of the flexural strain  term. 

Hence,  a strain state  corresponding to a linearly varying neutral 

i:;is  can he described relative to a reference axis that admits  linearly 

varying normal strains. 

2.2.2       COMPATIBILITY 

The point-wise defonnaLlons of the element are defined by the strain- 

di.'^placement  relation   (Figure  3     } 

2 
/        ^        du       1    xdv, 2 d   V ,„   „^ 

•:.(x,yi   =^+2   (d^     " y TT (2-W 

dx 

where e(x,y)  is  the normal strain   (in the x-dlrectlon)  at any point   (x,y); 

the x-coordinate locates planes nori^al to the undeformed reference axis, 

and  the y-coordinate locates points in that plane; u(x)  and v(x)  define 

the  deflections of any point   (x,0) on the reference axis in the x and y 

directions,   respectively. 

The terms on the right-hand side of Equation 2.11 admit the following 

gecnetrlc interpretations:    The first term defines the normal strain 

induced by axial deformations of the reference axis;  the second  term 

represents the contribution of bending of the reference axis to the 

normal strain  [8]; i.e., it accounts for the coupling of axial and flex- 

ural distortions; and the third term represents the elementary bending 

strain. 
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Equation 2.11 is valid If  the strains and rotations  are small 

compared to unity [e.g., 3,  8,  11J.    These limitations are characteristic 

of classical stability investigations leading to conditions of infini- 

tesimal stability  (e.g.,the Euler buckling load).    Equation 2.11 can 

form the basis of post-buckling Investigations provided the strains 

remain small and the rotations are held small by the division of the 

element into sub-elements.     The same procedure can be employed to model 

regions of large distortions Induced by inelastic deformations. 

With the aid of Equations 2.1 and 2.2,  the normal strain can be 

expressed in terms of the element distortion components: 

"l "ä      1 "?      *3 -    2 

-^'r + rV (2-12) 

where 

^ - 4C - 1 (2.13) 

^ = 4(-2C + 1) (2.14) 

4.1 = 6(-C2 + O (2.15) 

K = L(3C2 - 20 (2.16) 

6(-2C + 1) (2.17) 

and 

^ = L(6C - 2) (2.1^ 

y/L (2.19) 
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2.2.3 CONSTITUTIVE LAWS 

The srre9t;-otraln laws governing material behavior are presented In 

appendix A. They are expretised in terms of piece-wise linear functions 

suei that to every point in the domain (r) corresponds a unique point in 

the range (a),  which is determined by the strain history. 

The constitutive lawn  presented model the behavior of concrete (un- 

confined and confined) and reinforcing steel for monotonlc and cyclic 

loading. The inherent assumptions and limitations are stated. 

2.2.4 INTERNAL ENERGY 

Energy evaluation represents  the pivotal task In the search of the 

equilibriuin state corresponding to a prescribed time  (or load).    All 

measures of response  (e.g..displacements, deformations, strains, stresses, 

energies)   are expressed  relative to  the "initial state," which Is the 

unstrained and unloaded configuration of the system. 

Entrgy evaluation in the context of the solution process means the 

computation of the total energy of  the system for a given        displacement 

«täte.     The internal energy evaluation proceeds as follows:    On the basis 

of Equation 2.11 and appropriate constitutive laws  (appendix A),  the 

"internal-energy density,"  the internal energy per unit volume.  Is de- 

termined.    Integration of the internal-energy density over the volume of 

the element yields the internal energy of the element.    The Internal 

energy of the system is equal to the sum of the internal energies ol all 

elements  comprising the system (If the system contains release springs, 

their strain energies must be added). 

The principal assumption in the energy computation Is that no "load 
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reversals" occur during a time step; I.e., during the entire time step, 

the strain at any point In Che system Is either monotone Increasing or 

monotone decreasing. 

Energy evaluations must be conducted numerically.  In the elastic 

range, numerical Integration Is dictated by the possible variation of 

cross-sectional properties (e.g. area of compression block) over some 

region of the element. For Instance, an axial load and a varying 

bending moment cause a varying neutral axis (cf. Illustrative example 

on page 20 ).  In the Inelastic range. It Is not possible to formulate 

explicitly the variation of the Internal-energy density over the volume 

of the element. 

The numerical energy evaluation Is based on the discretization of 

the energy stored In the element. It Involves two principal tasks: 

1. The computation of the Internal-energy density at a discrete 

number of points in the element. 

2. The Integration of the Internal-energy density over the volume 

of the element. 

The computation of the internal-energy density during the solution 

process of a typical time step, from t1 to t., is described with the 

aid of Figure 7 .  t. corresponds to the time at which the last equi- 

librium state of the system has been obtained, and t» denotes the tine 

at which the next equilibrium state is sought. The stress-strain 

curves in Figure 7  govern the behavior of a discrete point of the 

element,  c, and c- denote strains at t. and t., respectively; both 
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loading  {t .-L   )   iiifi  mi loaJmH   (   ./i.)   raseH  are  illuKt r.iLtjd.     The Inter 

na] ■ ■■nr r )■>'   ciunsl'y  .it   tl.'H1   t-   i.-s 

"*   •  U* -1   Ü* (2.20) 

0*   -  /  1adt; (2.21) 

represents   the  internal-energy   Jerisity at  t. ,   and 

'12 -   '     '■*" (.0     if    ^ <  e} {Z'22) 

represents the change In the Internal-energy density during the time 

step t , t .  It follows from Figure  7 that for a given value of strain 

e,^, there corresponds a unique value of stress.  Consequently, the 

internal-energy density,and hence the internal energy» is uniquely defined 

by the strain state, which in turn Is a unique function of the displace- 

ment ^tate.  Hence, in the neighborhood of an equilibrium state, the 

Internal energy of the system is a unique function of the generalized 

coordinates. 

In tne inelastic range, the internal-energy density consists of a 

dissipative component U*, which is locked into the material by residual 

stresses on the microscopic level, and a recoverable component U*, which 

is released by the ma.  ial upon unloading (see Figure 8 ).  The dis- 

sipatlve component accounts for structural damping. 
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(a) LOADING (b) UNLOADING 

FIG. 7.     INTERNAL-ENERGY DENSITY 

(a) LOADING (b) UNLOADING 

FIG. 8.     DISSIPATIVE 8 RECOVERABLE ENERGY 
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The Cüii.piiLatlon of the internal energy of the «■»lenient Is based on 

the Gaussian quadrature method I 171; the cuncrete and steel are considered 

sepanitely. The internal-entrgy densities are evaluated at discrete 

points, the Oauss points, and substituted into the Gaussian quadrature 

formula to yield Lhe energy stored in the element.  The Gauss points are 

■iis't rihuted in the lonfütudinal plane of the element as follows: six 

points ^a 2 x 3 rule) are placed in the ton and bottom concrete covers, 

nine points {a i x 3 rule) are piaced in the concrete between the covers, 

and three points are placed along the centroidal axis of each steel layer. 

The acruracv of the energy computation Increases with the number of 

Gauss points per element, which at present is fixed. Hence, it can only 

be controlled Indirectly through the division of the element into sub- 

elements . 

f'nergv variations govern the behavior of the mathematical model of 

the structure.  The accuracy of response predictions of the structure is 

limited by the accuracy inherent in the energy evaluations.  For this 

reason internal energies induced by shear distortions are not Included 

in thj mathematical model; only estimates of the internal energy caused 

by shear distortions and measures of the significance of these distortions 

are provided. The modification of the element model to account for 

.-hear distortions introduces uncertainties which may seriously affect the 

reliability of the model.  The sources of uncertainty are identified 

in the following discussion. 

On the basis of the elementary beam theory including shear effects, 
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the shape   functions   In  Equation 2.2  can he modified  lu .issumi'  ihi'   form  | II' 

*2 -  li^e3 + 3f,2 + YO (2.23) 

and 

^3 - ^(C3 "  ^ + J (?2 -C )] (2.24) 

where 

Y  " "^— (2.25) 
LA G 

s 

and 

A    - - (2.26) 
s       ic 

Y  is a measure of  the relative importance of shear deformations.     In 

particular,  Y is  the ratio of the shear defleccion to  the bending de- 

flection of a fixed-fixed beam subject to a relative end displacement. 

It is important to recall that Equation 2.25  is based on the assumption 

that the beam is  prismatic, homogeneous,  Isotropie,  and linearly elastic. 

Accordingly,  the symbols in Equations  2.25 and 2.26 are constants  for a 

given beam:  E and G denote Young's modulus and  the shear modulus cf 

elasticity,  respectively? A, A  ,  and I define the area, the effective 
s 

shear area, and the moment of inertia of the cross section, respectively; 

K is a shape factor that reflects the variation of the shear stress 

across the section; and L is the length of the beam. 

For an inelastic reinforced concrete beam-column, the quantities in 

Equation 2.25 are not constants:  The moduli E and G vary pointwise over 

the volume of the uncracked concrete and steel; the section properties 

A, A , and I vary with the longitudinal axis of the beam due to non- 
s 
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uniform cracking; especially the effective shear area A is difficult 

to define .since the shear-stress distribution over a cracked section is 

not known. In essence, the problem is that Equation 2.25 is defined in 

terms of macro quantities which at best provide an indirect description 

of the state of an inelastic reinforced concrete beam-column. The same 

difficulty is encountered in the formulation of the shear energy which 

is defined t>y the relation 

U = / <2.27) 
s o 2A s 

or 

V21 u = ~~~ (2.28) 
s 2A G 

s 

since the shear force V is constant in the element model. 

In view of the uncertainties inherent in the prediction of shear 

effects, they are not modeled explicitly; only a measure of the sig-

nificance of shear distortions is provided on the basis of Equation 2.25, 

and an estimate of the internal energy induced by shear distortions is 

made on the basis of Equation 2.28. In the evaluation of Equations 2.25, 

28, E and G are assumed to be elastic and K is set- equal to 1.20. 

2.2.5 STRESS RESULTANTS 

The element end-forces, which act at the reference axis (cf. Figure 

9 ), are computed on the basis of the following formulas: 

f, - / a(L,y)dA (2.29) 
b l A(L) 
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FIG. 9.     ELEMENT FORCES 
( STRESS RESULTANTS) 
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FIG. 10.     INITIAL ELEMENT CONFIGURATION 
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f. , =- ' ya(L,y)dA 
b i A(L) 

(2.30) 

f - = f ya(0,y)dA 
a 3 A(0) 

(2.31) 

(2.32) 

f al -f, bl (2.33) 

f a2 -f. 
b2 (2.34) 

where f̂ . , f,̂ » i = 1, 2, 3, are the element forces at the a & b-end, 

respectively; and A(0), A(L) represent the cross-sectional areas at the 

a & b-end, respectively. 

2.3 SYSTEM MODEL 

The system model is a mathematical representation of plane, skeletal, 

reinforced concrete structures. It is an assemblage of line elements 

interconnected at a finite number of nodes. The elements are assumed to 

be rigidly connected at the nodes unless partial or complete releases 

are specified. 

In the linear domain, the state of the system is completely defined 

in terms of the generalized coordinates which consist of nodal displace-

ments, internal-element distortion components, and relative displacements 

at releases. In the nonlinear domain, the generalized coordinates must 

reiatcH to the equilibrium path (motion) of the system to define the 

state of the system (see section 2.2.4). In the "initial state," the 
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generalized coordinates are zero. 

There Is no restriction on the magnitude of  the generalized coordi- 

nates per se;  however,  relative displacements, such as  t.he  relative dis- 

placements of nodes linked by an element, are limited by the snail defor- 

mation requirements of  the element  (cf.   section 2.2.2).     Violations of 

these limitations can be resolved through the insertion of  additional 

nodes,  i.e.,through  the subdivision of elements. 

The following sections are concerned with compatibility and stability 

of equilibrium of the system. 

2.3.1    COMPATIBILITY 

This section relates nodal displacements with  relative element dis- 

placements,  called element distortion components.     In the derivation of 

these components,  four orthogonal, right-handed, Cartesian coordinate 

systems are employed;   they are called global, local, joint, and deformation 

systems.    The deflections are positive if  they take place  in the pocitive 

direction of the 1,  2-axes;  the positive sense of rotations about the 

3-axis is determined by  the right-hand rule. 

The global and local systems correspond to the coordinate systems 

used in linear matrix analysis   (Figure   10 ).    Joint  coordinates and 

joint properties  (e.g.,forces and displacements)   are expressed in global 

coordinates and denoted by capital letters.    Local axes define the 

orientation of the undeformed element:    the 1-axis coincides with the 

reference axis, and the 2 & 3-axes correspond to principal axes of the 

cross-section.  The 1-axis specifies the direction of the  element;  the 

element in Figure   10   goes  from joint 1 to joint j.    Local vectors are 
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identified by lower-case letters. 

The transformation of a two-dimensional global vector Y into a 

two-dimensional local vector y is defined by the matrix A: 

y = AY (2.35) 

where 

A "[-s c 1 (2-36> 

and 

c = cos a, s = sin a (2.37) 

It follows from Fig. 10 that 

c = AX^L, s = AX2/L (2.38) 

where 

AXX = X - X n , AX2 = Xj2 - X12 (2.39) 

and the initial element length 

L = (AXX2 + AX22)I (2.40) 

The joint and deformation reference frames are moving frames of 

reference rigidly attached to the joint at the origin of the element 

(Fig. 11). In the initial state, the joint coordinate system coincides 

with a global coordinate system originating from that joint, and the 

deformation coordinate system coincides with the local coordinate 

system. 

Vectors expressed in joint and deformation coordinate systems 

are identified by barred capital and barred lower-case letters, 

respectively. Since the joint and deformation reference frames are 

fixed relative to each other, corresponding vectors are transformed 

by the matrix; i.e., 
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y - AY (2.41) 

where y and Y are vectors expressed In deformation and joint coordinates, 

respectively. 

The global-joint transformation is given by 

Y - BY (2.42) 

where 

B -[  Cl      8ll (2.43) 
-81      Cl 

c1    -    cosU       ,     s1    -    slnU 3 (2.44) 

and U „        is the rotation of joint 1 about the 3-global axis. 

If follows from Eqs.  2.41 & 42 that the global-deformation 

transformation is defined by 

y-CY (2.45) 

where 

C " A8 (2.46) 

The derivation of the element distortion components follows 

directly from Fig. 11 . The relative member-end rotation 

u3 - 1^-1^3 (2.47) 

where U . and U,_ are the rotations of the joints j and 1, respectively. 

The  relative member-end deflections u  , u    are expressed in matrix form 

ü   -    CAX* - d (2.48) 
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INITIAL  STATE 

FIG. II.    ELEMENT  DISTORTION 
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where 

u    -    [ -l ] (2.49) 
u2 

AX*    -    AX   +    All (2,;0) 

X    -X AX 
AX      -    X.-X.     -    [  y

JX    1X  ] m    [      l  1                          (2.51) 
j    i              Xj2"Xl2 AX2 

U -U All 
AU - V'l " f uj^ J - [ Aa2 

1       (2-52) 

and 

d - [ J ) o AAX (2.53) 

In Eqs. 2.51-53, X,, X, are the joint position vectors; Ü., U. are the 

joint deflection vectors: and d defines the rigid-body motion of the 

element. With the aid of Eqs. 2.46, 50, & 53, Eq. 2.48 can be 

reduced to a form suitable for numerical evaluation: 

ü » A(DAX + BAU) (2.54) 

where 

-2s 2  s 
n = B-I = f   iZ   * ] (2.55) 

-s1  -2812 

si2 = sin(ni3/2) (2.56) 
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,uui   !    is   tlu   identity matrix.     For  infinitesimal <I isplacuments   (I.e., 

s.   -  ii{s.   ct  = 1,  sj.,  - 0,  nnAiT1   = iln  'V^ 0),  r.n.   ?..54  reduces  to 

u    =    Ä(EAX + AU) (7.57- 

whcio 

0       I'. . 

■-Jn o 

2.1.?     STABILITY OF E0UILT.BR1UM 

As  descrlbetl   in  section  3.2,   the  search for  the equllibriun state 

i orrn^nondin;', to a set  of prescribed  forces is governed by the  princinle 

of  least   nctlor.;  i.e.,at an equilibrium state the energy  function 

assumes  a   relative minimum.     Thus,   if  an equilibrium state  is  found, 

it   is  a  stable equilibrium state. 

2,4     FAILURE CRITERIA 

An  assemblage of  elements may experience element and  system 

failure.     Fracture,   the  limit  of  continuous change of  state   [4], 

defines  element  failure.     System  failure means collapse of  the 

.-issemblage. 

2.4.1     LLEMENT FAILURE 

''Structure-sensitive" properties of a material,  such as  the 

fracture  strength,  are essentially determined by  local imperfections 

in  the  ;'3roun structure of  the material;   consequently,  they exhibit 

i  considerably greater degree of  variability than "structure-insensitive" 

properties,  such as elastic  constants  fA].    Freudenthal based  this 
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explanation of material behavior on statistical principles. 

Although the literature reveals significant variations in the 

fracture strength of concrete and reinforced concrete elements,  the 

corresponding strength criteria are seldom based on probabilistic 

models;   I.e.»they do not deal with these Inherent uncertainties 

explicitly.    In conventional design,  the problem of uncertain failure 

strengths Is usually resolved by avoiding such failures rather than 

by predicting them.    The underlying philosophy is to produce ductile 

structures.    For instance,  the ultimate moment of an underrelnforced 

concrete beam is governed by the yield strength of the steel.    Con- 

sequently,  the significant variability of the crushing strength of 

the concrete has little affect on the ultimate flexural strength of the 

reinforced concrete beam. 

In this project,  the complete structural response to actions 

(including system failure) must be predicted.    Under static actions, 

system instability without element failure is possible (e.g., the 

formation of a collapse mechanism) but perhaps not probable.     In 

the dynamic state, it may not be possible to predict the collapse 

of the system until the collapse process has been initiated,  in which 

case element failure is probable.     In any event, element failure 

criteria are required. 

Since fracture appears to be a probabilistic phenomenon which 

is not modeled explicitly,  it is monitored via lower-bound criteria. 

When the possibility of fracture Is detected, the user must decide 

whether to base element failure on the conservative lower-bound 
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criterloii or  to modlly t:lie criterion to yield more probable  failure 

predictions  (see   appendix H).    This procedure requires the user to 

recognize and deal with the uncertainties  Inherent In failure criteria. 

Element  failure criteria are  resolved,  according to the failure 

mechanisms,   into micro and macro criteria.    Micro criteria are  formulated 

on the basis of explicit states at a point,  such as the strain state. 

Macro criteria are expressed in the form of empirical relations, 

involving stress-resultants and element properties. 

Micro criteria predict primary failures,   such as crushing and 

cracking of concrete and fracture of steel,   induced by excessive 

normal .strains.    The normal strains are caused by flexural and axial 

distortions.    Crushing of concrete may occur in the compression zone 

of unconfined concrete;  it may also take place in conjunction with 

compression steel "buckling" in confined concrete.    Cracking may lead 

to failure if it initiates in an unreinforced region of a beam in 

flexure or if  the entire cross-section is in tension.    Fracture of 

steel  is mainly associated with very light reinforcement. 

Macro criteria are concerned with shear-flexure failures   [1] 

which are precipitated by the formation of a diagonal tension crack; 

the resulting failures are called diagonal-tension, shear-compression, 

and shear-tension failures.    The nominal average shear stress is used 

as a measure of  the diagonal  tension strength.     For unreinforced webs 

the occurrence of a diagonal tension crack is  regarded as element 

failure.    Although diagonal tension cracks tend to stabilize in short 

and intermediate-length beams,  the crack stabilization mechanism is 

not well enough understood to warrant utilization of the reserve 
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strength associated with shear-compression and shear-tension failures, 

For beams with appropriate web reinforcement, the web reinforcement 

assures the stabilisation of the diagonal tension crack; however, 

yielding of the web reinforcement can lead again to the type of shear 

failures experienced by the unrelnforced beam. 

A classification of all possible failure modes is presented in 

appendix B.  In addition, lower bound criteria are stated, and 

modifications are formulated for the selection of more probable 

failure criteria. 

2.4.2  SYSTEM FAILURE 

System failure can be linked to instability of equilibrium. 

Stability is the property of equilibrium to sustain disturbances. 

This means that a stable system remains functional in the perturbed 

state.  Degree of stability of equilibrium lb a measure of the dis- 

turbances an equilibrium state can sustain [6] .  If an equilibrium 

state is unstable relative to a particular disturbance, the degree 

of stability is zero. 

The solution process employed in this analysis converges only 

to stable equilibrium states.  Hence, the problem is not to ascertain 

stability of equilibrium but to predict whether an equilibrium state 

exists for a prescribed set of actions.  The concept of degree of 

stability of equilibrium serves as a basis for this prediction. The 

"average curvature" of the work function at the equilibrium state is 

selected as a measure of degree of stability of equilibrium. The 

computation of the average curvature is based on the values of the 

curvatures of the work function at the equilibrium state in the 
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Jiffictitm ot   the  generalized coordinates.    The average curvature Is 

not   likely  to he  zero at an unstable equilibrium state since equilibrium 

is  unstable  if   the minimum principal curvature   is  zero.    However,   th^ 

rate of change ot  a load parameter with  respect   to  the average curvature 

approaches  zero at an unstable equilibrium state.     Hence,  this rate of 

change   is an indicator ot  the  imminence of instability. 

The  relation between degree of stability  of  equilibrium and  load 

li^viil  is depicted  in Figure 12    ;   for the single-degree-of-freedom 

system,   tlu   curvature  of  the work function at   the equilibrium state 

does approach zero at  the limit  load,  p*.    The continuous curve over 

the domain fKx'-'x*  represents stable equilibrium states, and the broken 

curve over  the domain x>x* represents unstable equilibrium states.    The 

decrease in degree of stability of equilibrium with increasing load is 

illustrated by the work-function curves  corresponding to the equilibrium 

states,  x1 ,   x  ,  x*.    The respective curvatures at  the equilibrium points 

decrease monoton!cally to zero.    For a  load in excess of the limit load, 

e.g.,p = p„,  no equilibrium state exists,  and  the solution process employed 

in this  study cannot  converge. 

As the unstable equilibrium state of  the system is approached, 

a load  increment  could  easily push  the  load beyond  the limit  load. 

To prevent  a  lengthy search for an  equilibrium state  that does not 

exist,   the solution process is terminated after  the deviation from 

the  last equilibrium state exceeds a prescribed bound. 
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FIG. 12.    DEGREE OF STABILITY 
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.'.'1     UMITATltWS 

Tin'  prhic I p.i I   I Imi tnf IOUK arul  .-.pproxlmat: f on-i  of   the mathematical 

moiiel  of   the sl'eletnl   reinforced concrete structure are summarized 

below; 

1. Thi?  element  model   is subject  to the  standard  limitations 

associated  with  the discretisation approach of  the  finite 

clement method   (e.p.,internal element displacements are 

expressed  approximately in  terms of  the nodal displacements; 

distributed  loads are replaced by "equivalent" nodal forces). 

2. Plane sections are assumed to remain plane and normal to the 

deformed reference axis of  the reinforced concrete beam. 

This assumption appears to be  reasonable up to the formation 

of diagonal  tension cracks of unreinforced webs   [16], which 

represent limits of continuous change of  state of the element. 

3. fJormal  strains  and  rotations are assumed   to be "small" in 

the sense  that  their squares are negligible with respect  to 

unity   [3,   111;   i.e.,  they are regarded to be Infinitesimals. 

These  limitations are acceptable since the  fracture strains 

of the materials modeled in this project meet  this require- 

ment,  and  the rotations can be controlled  through element 

subdivision.     Shear distortions are not modeled explicitly; 

the indication  is that a modification of  the gross element 

model  to include shear deformations is likely to impair the 

quality of  the model. 

4. The constitutive laws governing material behavior are described 

by deterministic models.    Consequently,  they represent at 
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best Che staHntlcal mean of the material properttes and 

do not reflect the significant randomness characteristic 

of some properties such as the fracture strength. 

5. Energy computation Is based on the assumption that no "load 

reversals" occur during a time (or load) Increment of the 

solution process. Moreover, the computation of the Internal 

energy Is based on the evaluation of the Internal energy 

densities at a discrete number of points In the beam element. 

This Introduces another discretization error, which vanishes 

only In the limit. 

6. Element failures precipitated by material fractures are 

Inherently random phenomena which can only be monitored by 

lower bound criteria In a deterministic analysis. In the 

event that structural collapse is strongly influenced by 

element failures (as in contrast to the formation of a 

"plastic" collapse mechanism), the quality of this prediction 

by deterministic methods is questionable. 
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ACTION  1 

RMSI'ONSr 

The  response of   the system modfl   to act..OUR  IS sought at a discrete 

micihor or  points  In  time.     Tho solut ion  process,   formulated by Melosh and 

K^lley   [()],   i-s  a  closed   iterative process within  two  successive  time 

points:     'Hio  state of   the  system is  assumed  to be  known at  the beginning 

and  is  sought  at  th^  en.-l  of  the  time step.     Thus,   if   the state of  the 

system  is known at  one  point   Ir   time,  the response determination 

proceeds  like  a  chain  reaction  through successive discrete points. 

The  solution pro';_ss  comprises  two  fundamental   concepts: 

1.     discretization  of motion 

?.     work-function minimization. 

The motion,   time  functions of  the. generalized  system coordinates,   is 

discretlzed  via  the  finite element method   [17];   this  process Is analogous 

to N'cwmark's  "-method   'lO]:  Each displacement  function  is completely 

defined over a  time  step by three Initial  conditions,  which are known, 

and one end condition,  which Is the desired displacement at the end of 

the  Lime  step.     The work  function   [7],   a scalar  function that contains 

Implicitly all  the  forces acting on the system  (applied,  inertia, 

internal),   is  expressed  in terras of  the unknown  system coordinates at 

the end  of  the  time  step.     The desired  system configuration is obtained 

by minimization of  the work  function, which assumes a relative minimum 

at  the dynamic equilibrium state. 

Function minimization is based on Stewart's modification of 

Davidson's method   [13).     A measure of  the quality of  the response 
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predictions Is provided through error controls linked to automatic 

time-step selections. 

3.1    DISCRETIZATION OF MOTION 

The time domain is subdivided into time segments At, and the dis- 

placement functions are approximated over each subdomain by a finite 

power series of the form 

x1(t)    -   a10 + a11t + al2t2/2 + ai3t3/6, 0<t<Lt (3.1) 

where x    represents the 1      generalized system coordinate, and t is the 

normalized time coordinate.    The constant coefficients in Eq.  3.1 

are determined on the basis of the following end conditions: 

xal    - x^O) (3.2a) 

^    -    ^(0) (3.2b) 

x ,    -    —,x,(0) (3.2c) 
ai dt2  1 

xbi    -    x1  (At) (3.2d) 

where x ,, x ., x . denote the displacement, velocity, acceleration, 
al  al  al 

respectively, at the beginning of the time step, and x. . denotes the 

displacement at the end of the time step. It follows from Eqs. 3.1 and 

3.2 that the displacement and acceleration functions can be expressed 

over the domain [0, At] in the form 

x (t) - x  + x .t + x .t2/2 + a.t3/6 (3.3) 
i     ai   al    al      1 
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x, (t) - x  + irt (3.4) 
i       al   l 

where 

K  « 6(x  - x  - x 't - x At2/2)/At3 (3.5) 
1      bl   al   al     al 

i.2    WORK-FUNCTION MINIMIZATION 

Conditions of dynamic equilibrium are established on the basis of 

the principle of virtual work, which states that the vanishing of the 

virtual work for all possible virtual displacements represents a 

sufficient condition of equilibrium; i.e., 

ÖW = 0 (3.6) 

for all   independent virtual displacements is a sufficient  condition of 

equilibrium.    The total virtual work can be expressed as 

^W    =    5W    - 511 (3.7) 
e 

where 6W represents the virtual work of external forces and 6U denotes 

the first variation in the internal energy of the system: 

5We = 6xjpb (3.8) 

6U = 5xjrb (3.9) 

Pb = fb + fb " ^ (3-10) 

and the i  component of r, is 
b 

= IM 
rbi    3X1(At) (3.11) 
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The subscript b In Eqs. 3.8-11 signifies that the corresponding variables 

are evaluated at the end of the time step, at t - At; x. , x. denote 

the generalized displacement, acceleration vectors,respectively; m Is 

a diagonal mass matrix; p. Is the generalized external force vector, 

e 
which consists of the applied, f. , equivalent, f. , and Inertia, -mx. , 

force vectors; r. represents the generalized Internal force vector, 

whose components are the partial derivatives of the Internal energy 

with respect to the generalized coordinates. The superscript T 

signifies transposition. Eqs. 3.6-9 lead to the condition 

öxj (pb - rb) - 0 (3.12) 

which yields the equilibrium equation 

Pb - rb    -    0 (3.13) 

In the vicinity of the equilibrium state corresponding to the 

beginning of the time step, U is a function of the generalized 

coordinates (cf. section 2.2.4).    Moreover p.   is a function of x, 

by virtue of Eqs.  3.4, 5.    Thus,  the equilibrium equation, Eq.  3.13, 

is a function of x. . 

The unknown generalized coordinates at the end of the time step 

are not obtained by direct solution of Eq. 3.13 but by minimization 

of the corresponding work function 

W<V • Vb-ü(V (3-14) 
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The siatlonary condition,   Ivq.   '3.6, whicli leads to the equation of  dynamic 

equilibrium Is also a minimum condition.    On the basis of  the principle 

of   least   action  [/],  the work  function W assumes a relative minimum 

at  x. ,   the solution of  Kq.   3.13. 

3.3     PkOCFSS  ERRORS 

There are essentially  two sources of error  in  the solution process  [?]: 

truncation error and iteration error.    The truncation error is induced by the 

approximate representation of the displacement function over a time step 

by a finite power series.     The truncation error decreases with the size 

oi   the time step and vanishes in the limit; hence,  it can be controlled 

by varying the length of  the time step.    The iteration  error arises in 

the minimization process, which converges in the limit to the exact 

solution.    Hence,  the iteration error can be made arbitrarily small 

by a sufficiently large number of iterations. 

The  force imbalance at  the mid-point of the time step Is selected 

as a basis for a measure of the truncation error.     It follows from 

Eq.   3.13 that the unbalanced i      generalized force component 

^(t)    -    p^t)  - r^t)   ,  0<t<At (3.15) 

The  relation 

e,(t)  =  [*,(t)x,(t)]/W(t) (3.16) 
i i i 

transforms the force imbalance into a relative energy imbalance. 
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Denote 

ea   -   max|e1(0)| (3.17a) 

eab    -    max|ei(At/2)| (3.17b) 

eb    -   max|ei(At)|, 1    -    1,  2,   ..., n (3.17c) 

e ,e. constitute measures of the Iteration error at the beginning and 

end of the time step, respectively, and e . is a measure of the truncation 

and iteration errors at the mid-point; n is the number of generalized 

coordinates. If one assumes that the iteration error varies linearly 

over the time step, a measure of the truncation error is obtained in 

the form (cf. Fig. 13 ) 

eT - eab ' (ea + %)/2 (3-18) 

The length of the time step is governed by the following inequality 

V-V-eu (3-19) 

where e. and e define lower and upper bounds on the truncation error 

measure, respectively. The time step is increased i.' e <e and decreased 

if e_>e . The lower bound is Imposed to assure computer accuracy; 

i.e., to assure that the time step is largu enough to produce measurable 

changes in the response. The relation between computer error, truncation 

error, and step length is depicted in Fig. 14 . The accuracy of the 

solution process is apparently insensitive to variations in At over 

the domain (At., At.). The most economical step is near At.. 
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A direct measure of the Iteration error is provided by the maximum 

absolute value of the unbalanced generalized force component at the end 

of the time step 

ijv - max|i|) (At)|  , i ■ 1, 2, ..., n (3.20) 

The minimization process is continued until 

b — u 

where i|) is a prescribed upper bound on the force imbalance. 
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SECTION 4 

SUMMARY 

This report describes the mathematical models and the solution 

process which form the basis of the computer program SINGER. The 

function of SINGER is to predict the behavior of plane skeletal rein- 

forced concrete structures in their environments. Of primary interest 

is the transient nonlinear response including element failures and 

structural collapse. 

The principal features of the mathematical models and the solution 

process are summarized below: 

ACTIONS 

Actions, mathematical models of the environment,  consist of the 

self-weight of the structure, distributed and concentrated static and 

dynamic loads,  inertia forces, and support motions.    All distributed 

forces are replaced by equivalent nodal forces.    Lumped masses are 

assigned to  the nodal degrees-of-freedom. 

SYSTEM MOD'ZL 

a. The structure is represented by an assemblage of line elements 

(models of reinforced concrete bean-columns) and springs  (models 

of partial joint releases)  Interconnected at a finite number of 

nodes. 

b. The state of the system is characterized by the work function, 

a scalar function that contains Implicitly all the forces acting 

on the  system.    The work function Is uniquely defined in terms 
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of Che generalized coordinates, which must be related to the 

equilibrium path (motion) when the system behaves nonlinearly. 

c. There Is no direct restriction on the magnitude of the generalized 

coordinates, which consist of nodal-displacements, relative release- 

displacements, and Internal element-displacements. However, relative 

displacements of nodes linked by elements are limited by the small 

deformation requirements of the elements. Violations of these 

limitations can be resolved through subdivision of the elements. 

d. The transformation of the large nodal displacements Into relative 

element displacements Is expressed with the aid of two frames of 

reference: The global frame of reference, which is fixed in 

space, is used to describe nodal properties (e.g.,initial state, 

displacements, forces); the deformation frame of reference, a 

moving frame of reference, is used to describe element properties 

(e.g.»strains, stresses, distortions). 

e. In a static analysis, system failure, structural collapse, is limced 

to instability of equilibrium. In a dynamic analysis, structural 

collapse is inferred from the motion of the system. 

ELEMENT MODEL 

a. The beam-column, the basic structural element, is modeled as a one- 

dimensional continuum, which is discretized. Axial and flexural 

deformations are modeled explicitly; only a measure of shear 

distortions and their significance is provided. Deformations are 

limited by the assumption that strains and rotations are small 

relative to unity. Inelastic deformations are modeled up to element 
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failure.    Energy dissipation Induced by Inelastic behavior accounts 

for structural damping. 

b. The beam-colunm effect, the coupling of axial and flexural 

deformations Is  represented by the corresponding nonlinear term 

In the strain-displacement relation.    The varying neutral axis, 

a characteristic of beam-columns,  is modeled by admitting normal 

strain variations along the reference axis.    This feature makps 

it also possible to locate the reference axis anywhere in the 

longitudinal plane of symmetry of the element;  thus it eliminates 

modeling of joint eccentricities. 

c. Excessive deformations associated with slender elements or "plastic" 

hinges arc controlled by the division of the element into subelements. 

d. Constitutive laws for concrete (unconflned and confined) and rein- 

forcing steel are described in the form of plecewlse linear stress- 

strain curves.    Material behavior under monotonic and cyclic 

loading is modeled. 

e. Element  failure, which is defined as the limit of continuous change 

of state,  is predicted on the basis of lower-bound criteria. 

Modifications of these criteria are formulated to permit more 

probable failure predictions. 

RESPONSE 

The solution process initiates at a point where the state of the 

system is completely defined and proceeds along discrete points of 

the motion: The time function of each generalized coordinate is approxi- 

mated within two successive points in time, the time step, by a finite 
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power series whose undetermiaed coefficient corresponds to the unknown 

displacement at the end of the time step. This representation of the 

motion permits one to formulate the work function of the system at the 

end of the time step In terms of the unknown generalized coordinates. 

The desired equilibrium state Is obtained by minimization of the work 

function. 

LIMITATIONS 

Spatial and temporal discretization and the inherent variability 

of material properties form the principal sources of error. Spatial 

discretization errors can be controlled through the subdivision of 

elements. Although internal energy computation is based on a fixed 

mesh imposed on the longitudinal plane of the element, the reduction 

of the element length results in a mesh refinement, and, hence it 

improves the accuracy of the energy computation. Temporal discretization 

errors can be controlled by varying the size of the time step. The 

constitutive laws governing material behavior are described by determin- 

istic models, which do not reflect the randomness of some properties such 

as the fracture strength. Consequently, element failures precipitated 

by material fracture are monitored via lower-bound criteria. 
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NOTATION 

A,A  ■ area, effective shear area of beam 

A,B,C,D,E - transformation matrices 

B,B - compatibility matrices 

c -    cos a 

c  « cos U._ 

d = rigid-body configuration of element in deformation 

coordinates 

e.  = energy imbalance corresponding to 1  generalized force 

component 

e ,e,  = measures of iteration error at the beginning, end of 

time step At 

e ,  = measure of truncation and iteration errors at At/2 
an 

e,r = measure of truncation error 

e.,e  = lower, upper bound on eT 

E,G = Young'Sjshear modulus of elasticity 

f ,f.  » element force vectors at the a, b-end 
a b ' 

f J.^VJ  = element forces at the a, b-end 
ai bl 

f. ,f.  • generalized applied, equivalent force vector at the 

end of time step At 

h = height of beam 

I = moment of inertia of beam 

I = identity matrix 

k .k,,k,  = stiffness coefficients 
o 1 i 

K_ ■ tangent stiffness matrix 
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Pip» 

Ap 

0i2 

t 

At 

u,v 

u, ui 

U 

6U 

U 
8 

u. 

U13 

Aü-U -U 

U* 

Ud'Ur 
*    * 

ürü2 

length of bean 

diagonal mass matrix 

number of generalized coordinates 

generalized external force vector, at the end of time 

step At 

unbalanced force vector (scalar) 

generalized Internal force vector at the end of time 

step At 

sin a 

sin Vi3 

Bin C'i3/2) 

time 

specific values of t 

time ttep 

deflections of point (x,0) on the reference axis 

element distortion vector, component 

Internal energy 

1st variation of Internal energy 

Internal energy Induced by shear deformations 

displacement vector of joint 1 In global coordinates 

rotation of Joint 1 about 3-global axis 

relative Joint displacement vector In global coordinates 

Internal-energy density 

dlsslpative, recoverable Internal-energy density 

Internal-energy density at time t1, t. 
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II* - change in Internal-energy density during the time 

interval t. , t_ 

V = shear force 

V = volume 

W ■ work function 

,SW = total virtual work 

i1 W = external virtual work e 

x,y = element deformation axes 

x,x. = generalized coordinate vector, component 

x = n  trial solution n 

".x = correction to x n n 

x, ,x, = generalized displacement, acceleration vector at the end of 

time step At 

x , ,x ,x = displacement, velocity, acceleration at the beginning of time 
3 X   3 X   aX 

step At 

x, . ■ displacement at the end of time step At 

6x. = virtual displacement vector at the end of time step At 

X, ,X = position vectors of  joints 1, j in global coordinates 

X = global coordinate of joint 1 in j direction 

AX=X.-X, = relative position vector in the initial state 

AX,,AX0 ■ components of AX 

AX*=AX+AU ■ relative position vector In the displaced state 

a - angle between 1-local axis of element and 1-global axis 

P. • coefficient 

V = shear deformation factor 
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Eo'e 

n* 

virtual variation 

normal strains 

normal strain at time t. 

nondlmenslonal element deformation axes 

shape factor 

normal stress 

element shape function 

d^ 

dlT 

IF 
measure of Iteration error at the end of time step At 

1  unbalanced generalized force 

upper bound on i|/. 
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APPENDIX A 

CONSTITUTIVE LAWS FOR CONCRETE AND STEEL 

This appendix summarizeä the unlaxlal stress-strain curves used In 

describing the material response of a single fiber of either concrete or 

steel.  The curves described are the default stress-strain curves gener- 

ated by the program. The user has the option to specify others if he so 

desires. 

A.l  ASSUMPTIONS ON MATERIAL BEHAVIOR 

The following assumptions have been made In developing the consti- 

tutive models presented herein: 

1. Stresses in the concrete and steel are uniquely related to the 

strains. For direct tension and compression tests under short 

time loading, this Is correct. This permits the calculation of 

the stresses In the concrete and steel once the strains are 

known. 

2. The stress-strain relationship for compressed concrete not 

confined by lateral reinforcement is identical to that for 

concrete in direct compression.  The neglect of a strain 

gradient effect in the compression zone of a beam is 

justified by adequate correlatirn between experimental 

results and many flexural theories based on this assumption. 

3. The stress-strain relationship for compressed concrete confined 

by lateral reinforcement has a strength greater than the un- 

conflned direct compression strength. Data are presented in 

section A.2 which supports and quantifies this assumption. 
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4. Tension stress In concrete Is neglectV.. The magnitude of the 

tensile stresses In the concrete Is small compared to that In 

the reinforcement and their neglect will not significantly 

change the results of the analysis. 

5. Concrete stress-strain curves are valid for normal weight 

concrete and compresslve strengths between 2500 pel and 8000 

psl. Lightweight and heavyweight concretes are excluded. 

There Is sufficient test data to generalize the curves pre- 

sented to only a limited range of concrete strengths. 

6. The stress-strain relationships for steel can be determined 

from tension tests for both the behavior in tension and 

compression. Complete stress-strain curves, Including strain 

hardening and breaking strengths, are given in section A.3. 

These are limited to steels with yield points from 33 ksi to 

75 ksi. 

7. Creep, shrinkage, and temperature effects are Ignored. For 

short duration loadings, the first two effects can be neglected. 

The change of material properties with temperature is not 

sufficiently documented for reinforced concrete and therefore 

is omitted. 

8. Strain rate effects on material response are neglected.    This 

can influence the stress-strain response at local points in 

the structure.    However,  it is assumed that the overall response 

of the structure will not be significantly affected by ignoring 

this complexity. 

9. Adequate lateral support is present to prevent buckling of 

steel in compression.    This assumption id valid as long as 

the concrete cover is intact.    After spelling has taken place, 

lateral support must be provided by lateral ties or stirrups. 
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In developing the computer code,  checks are made on the above assump- 

tions whenever possible.    For example,  the concrete compresslve strength 

given must be within the range specified,  stirrup spacing Is checked 

against a requirement for prevention of local buckling,  etc.     If one of 

the assumptions Is violated, a warning Is given to the user that he is 

using  the program beyond its intended application. 

A. 2     STRESS-STRAIN RELATIONSHIP FOR CONCRETE 

If concrete is compressed in one direction,  it tends to expand 

laterally.     If  this expansion occurs  freely,   the concrete is said  to be 

"unconflned" and principal compresslve stresses exist in one direction 

only.    On the other hand,  if such lateral expansion is restricted,  the 

concrete Is said to be "confined" and,  as a result of such restriction, 

compresslve stresses develop in all directions.    Up to the stage corre- 

sponding to crushing the behavior of  the concrete Is essentially that 

of  the unconflned concrete.    Beyond this stage, the concrete core bound 

by  lateral  reinforcement has greater  strength and ductility than the un- 

conflned concrete.    Because of these differences,  It is necessary  to 

describe stress-strain relationships  for both types of concrete. 

A.2.1    Stress-Strain Curve  for Unconflned Concrete 

The default stress-strain curve for unconflned concrete is given in 

Figure A.l.    A non-dimensional plot  Is not posilble because the slope of 

the descending branch Is dependent on the compresslve cylinder strength, 

f.     The curve is divided Into two portions, AB and BC*.    For the region 

AB,   a parabolic expression  (represented by a series of straight line 

segments in the program)  given in reference A.l Is used: 
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f    -  f 
c     c 

2e     U  \2 

-^  " fe) ' 

in which the strain at maximum stress is assumed to be c - 0.002.  It Is 
o 

also assumed that the maximum stress Is the cylinder strength V   , i.e., 

the factor 0.85 is not included. The reason for this is that the 0.85 

factor was based on column tests without a strain gradient. When a 

strain gradient Is present, such as in a member in bending, observations 

have shown (reference A.2) that a factor of 1.0 Is conservative.  The region 

BC IS defined by a straight line whose slope is determined by the strain 

t;,^ , when the concrete stress has fallen to 50% of the cylinder strength 

of the unconfined concrete.  This Is given in reference A.3 as 

3 + 0.002f' 
c 

e50u '  f - 1,000 (A*2) 
c   ' 

In which f Is expressed In pounds per square inch. The straight line Is 

continued until the concrete strain reaches the failure value defined In 

Appendix B, section B.3.1. At this point the unconfined concrete Is no 

longer effective and is removed from the cross-section. 

A.2.2 Stress-Strain Curve for Confined Concrete 

The default stress-strain curve for confined concrete is also given 

in Figure A.l. The curve is divided into four regions and is similar to 

the curve given in reference A.4. For the region AB, the curve is Identical 

to that given by Eq. A.l. 

For the region BB', a modification In the curve of reference A.4 Is made 

to Include an Increase in compresslve strength when lateral ties are 

present.  Recommended Increases for this region vary from nearly 50% (reference 
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A.5) to zero (reference A.6). However, a majority of the researchers Indicate 

that a modest Increase Is reasonable, and the following expression Is used: 

f" - f' + Af (A. 3) c     c     c 

In which f" ■ confined concrete compresslve strength and    Af    ■ Increase In 
c c 

compresslve strength over the unconflned value. The magnitude of Af' Is 

dependent on the confining action of the transverse reinforcement. A the- 

oretical discussion In reference A.5 Indicates that the lateral pressure 

Induced Is proportional to p"f" , where p" ■ ratio of the volume of lateral 
s 

reinforcement to the volume of confined concrete and f" ■ unit stress in s 

transverse reinforcement (which is assumed to be equal to the yield stress). 

In Figure A.2 are shown the results of tests on rectangular prisms 

under concentric load from reference A.7 and the modification recommended in 

reference A.5 for members in flexure. The higher values in each of the 

concentric load tests are for high strength concretes, the lower values for 

medium strength concretes. The limits on the bending results are given to 

show the trend when only a portion of the confined uepth of the section, d", 

is In compression (c ■ depth to the neutral axis). A conservative 

estimate of the Increase In strength is given by the straight line whose 

equation Is: 

Afc - | p'^" < 2000 psi (A.it) 

The upper limit is necessary because of the limited range of the test data. 

Corresponding to the increased maximum compresslve strength is a 

confined concrete strain, e", which can be expressed as 

^  - e0 +  Aec (A.5) 
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where Ac ■ increase in strain at maximum stress over the unconfined value, c 

In addition to the volumetric ratio, p", reference A.3 indicates that confined 

concrete strain is dependent on the ratio of the minimum dimension of the 

confined core to the spacing of the transverse reinforcemdnt, b"/s. 

Experimental results from the tests in reference A.8 and the recommended 

values of reference A.5 are shown in Figure A.3 for the increase in confined 

concrete strain.  Because of the scatter in the data a lower bound 

straight line given by the following expression is used: 

AE  - 0.17p" /b'Vs < 0.008 (A.6) 

The upper limit corresponds to a total strain before reaching the de- 

scending branch of 0.01. 

For the descending branch B'C, the slope Is established by the strain, 

tcnc»  at 0.5f', for the confined concrete and is given in reference A.A as 

3 + 0.002ff     - 
e50C -  P  - 1,000C   + f P" ^ (A.7) 

c 

The first term on the right hand side is identical to Eq. A.2 , thus 

the second term represents the Increase in the 50% strain for the con- 

fined concrete over the value for unconfined concrete. The point C on the 

descending branch is determined by extending a straight line from B' 

through the 50% point until the concrete stress has fallen to 20% of f. 

For the region CD, it is assumed that the concrete can sustain a stress 

of 0.2f' for indefinitely large strains. This has been assumed previously 

in the analysis used In reference A. 3 and member failure occured (fracture 

of tensile steel) before the concrete strains became unrealistic. 
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A.2.3 Cyclic Loading Response of Concrete 

The behavior of concrete under repeated loading is also shown in 

Figure A.l.    Unloading and reloading that occurs before point B*   (or 

point B in the case of unconflned concrete)   is assumed to follow the 

initial tangent slope E  .    Reversed loading on the descending branch of 

either the unconfined or confined stress-strain curve is referred to as 

"drop-elastic."      For example, on unloading from point E,  it Is assumed 

that 0.75 of  the previous stress is lost without  a decrease In strain  (the 

"drop" portion)  and then a linear path of slope 0.25 E    is followed to 

point G (the "elastic" portion).    If the concrete continues to unload, the 

tensile strains  increase without any tensile stress developing.    On re- 

loading the strain must regain the value at G before compressive stress 

can be sustained again.     Note that the average  slope of the assumed loop 

between E and G is parallel to the initial tangent modulus of the stress- 

strain curve. 

This representation of the cyclic loading behavior is taken from reference 

A.4.    It can be modified by changing the value of the slope from F to G. 

A user can input  the value of the slope as a constant k times the initial 

tangent modulus.     The value of k - 0.25  is the default  condition. 

A. 3    STRESS-STRAIN RELATIONSHIP FOR STEEL 

The default stress-strain curves utilized for steel are shown 

in Figure A.A.    These curves cover a yield point,  f  ,  range from 33 ksi to 

75 ksi, and strains from zero to the breaking point. They include two 

structural steel grades with yield points equal to 33 ksi and 36 ksi.    All 

of the curves have an elastic portion AB with a constant modulus of 

3 
elasticity,  E    - 29 x 10    ksi.    The strain at  the beginning of yield,  e   , 

s y 
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Is equal to f /E . The yield plateau BC varies with the yield strength of 

the steel. Typical values for the strain at which strain hardening begins, 

E , are given In Table 1. 

The strain hardening curve CDF reaches a maximum stress, f . at a 
u 

strain, e  , before dropping off slightly at the breaking strain, c. . 
u b 

Typical values of these quantities are also given In Table 1.    The 

following expression for the strain hardening portion (represented by 

a series of straight line segments In the program) was adapted from one 

developed In   reference A.9 

1    + 
e        e .  / f s -    sh 
e    - e . u        sh >   y vlHl-^)I('■•8, 

Table 1 

TYPICAL VALUES FOR STEEL STRESS-STRAIN CURVES 

f , ksl 
y 

f , ksl 
u ev 

esh eu cb 

33 58 0.00114 0.014 0.15 0.21 

36 60 0.00125 0.014 0.15 0.20 

40 80 0.00138 0.023 0.14 0.20 

50 92 0.00173 0.013 0.12 0.154 

60 106 0.00208 0.0060 0.087 0.136 

75 130 0.00260 0.0027 0.073 0.115 
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IJhen the loading Is reversed after the yield strain has been reached, 

the shape of the stress-strain curve Is changed because It no longer has a 

well-defined yield point upon reloading. Figure A.5 shows the general 

behavior assumed for the steel when reverse loading occurs.  On first 

loading to point 1, the virgin curve described previously is followed. On 

unloading from point 1 to point 2, the path is parallel to the Inltital 

elastic slope. When loading in the opposite direction from point 2 to point 

3, the yield point is missing and the curve is described by Eq. A.8 with 

the origin shifted to point 2.  Subsequent cycles of unloading and re- 

loading follow the same pattern and are shown in Figure A.5. 

In a previous investigation (reference A.10), a degradation of stiffness 

with cycles of loading was proposed for the reinforcing steel.  However, 

a study of the original paper (reference A.11) on which the proposal was based 

revealed that test! were conducted for only one bar «ize (No. 11) and 

one yield stress (50 ksl).  To extrapolate these results to the general 

behavior of all bar sizes with a range of yield points from 33 ksi to 75 

k.si is not justified. Furthermore, the data of reference A. 11 showed an 

increase in stiffness in some cycles. 
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NOTATION 

Young's modulus of elasticity for concrete 

Young's modulus of elasticity for steel 

b" 

c 

d" 

k 

P 

s 

breadth of confined concrete cross-section 

depth to neutral axis from compresslve face 

depth of confined concrete cross-section 

unloading constant for concrete hysteresis loop 

volumetric ratio of transverse reinforcement 

longitudinal spacing of transverse reinforcement 

f 
c 
f 
c 

f" 
c 

f 
s 

f" 
s 

f 
u 

f 
y 

f" 
y 

Af 

compresslve stress In concrete 

compresslve strength of 6 by 12 In. cylinders 

compresslve strength of confined concrete 

stress In longitudinal reinforcement 

stress In lateral reinforcement 

maximum steel stress In strain hardening region 

yield stress of longitudinal reinforcement 

yield stress of lateral reinforcement 

increase of concrete strength over unconfined value 

c 
.11 

"sh 

u 

5ÖC 

e50u 
Ae 

breaking strain of longitudinal reinforcement 

compresslve strain in concrete 

strain in confined concrete at maximum stress 

strain in unconfined concrete at maximum stress 

strain in longitudinal reinforcement 

steel strain at onset of strain hardening 

strain corresponding to maximum steel stress 

yield strain of longitudinal reinforcement 

confined concrete strain on falling branch at 0.5f' 

unconfined concrete strain on falling branch at 0.5f' 
c 

Increase of concrete strain over unconfined value 
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AHPF.NDIX ß 

I-LEMKNT FAILURE CRITERIA 

The behavior of the  structural system is dependent upon the behavior 

oi: each component element since each one contributes to the total energy 

of the system. The process ot failure Is also related to the failure of 

the Individual elements.  Some provision must be made to define and predict 

failure in an element, This is the purpose of the element failure criteria. 

B.l  OFFINITIONS 

Failure of a real concrete member can be associated with an abrupt 

loss in its abilit" to resist applied loads. Failure is caused by 

localized behavior, and it is anually associated with fracture of material. 

Failure of the element model is defined as those states which correspond 

to the phvsical failure modes of a real member and determine a limit to 

the continuum model behavior. These states are detected by assigning specific 

values to certain quantitites which can be related to variables in the 

mathematical model.  Since these variables are directly associated with 

physical behavior, their values must be obtained from test results. 

The derived expressions which relate these numerical quantities to 

the corresponding quantities determined from the element model are 

referred to as the element failure criteria. Each failure criterion is 

developed and applied consistent with the mathematical model of the 

physical system and the actions, 

B.2  CLASSIFICATION OF FAILURE MODES 

A failure mode is a distinct manifestation of failure. The prediction 

of each specific failure mode is made with the corresponding failure 

criteria. Some criteria can be directly related to the continuum strain 
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or stress states at a point, while others rely on an Indirect measure 

of strength through stress resultants and element properties. The former 

type of criteria are referred to as "micro criteria"; the latter are called 

"macro criteria". 

The classification of failure Is made according to the dominant stress 

state within an element at critical sections defined for each failure 

mode; (critical sections are discussed In section B.4.2). A typical element 

with stress resultari: cr'atlon along the length Is shown In Fig. B.l. 

Accordingly, dominant stress states may be associated with either the 

bending moment, the shear force, or the axial force. Since normal strain 

and stress values are defined at each point by the continuum model, the 

dominant normal stress effects (flexural failure and axial force failure) 

are predicted by micro criteria based on limiting strain or stress values. 

The shear stresses are not predicted In a direct way; a nominal (average) 

shear stress distribution can be measured in an Indirect way based on 

equilibrium requirements for the gross element. Therefore, the shear- 

flexure failure Is detected by a macro criteria. 

The three basic failure categories are: 

1. Flexural failure: dominant normal stress state caused by 

bending, (micro); 

2. Shear-flexure failure: dominant shear stress effect in addition 

to the normal bending stress caused by a variation in bending 

moment (macro); and 

3. Axial force failure: dominant normal stress state caused by a 

large axial force, (micro). 

Since all three stress resultants (f ,, f _, f _) can be associated with 
xl' x2' x3 

any of the three categories of failure, the distinction between case 3 
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and the other two Is made on the basis of the strain state at the critical 

sections; cases 1 and 2 are associated with strain states which have a 

point of zero strain within the dimensions of the cross section; case 3 

corresponds to the condition of tension or compression across the entire 

section, since the zero strain point falls outside the section dimensions. 

Each failure category can be further classified according to the 

possible failure modes.  The set of failure modes for each category is 

determined by the type  of reinforcement and the type of failure possible 

for the dominant stress conditions prescribed. The sets of failure modes 

for the failure categories are defined in the flow charts of Figs. B.2,3, 

and 4.  The failure criteria corresponding to the failure modes are 

developed in section B.3. 

B.3 FAILURE CRITERIA 

Each failure mode defined in section B.2 requires a failure criterion. 

In addition to measuring the limiting condition for the dominant effect, 

the criterion must include other effects characteristic of possible system 

behavior. This includes: secondary stress effects, which provide any 

alterations to the basic criteria caused by stresses other than the 

dominant stress; and the effects of previous loading history, which 

measure any change to the basic form caused by the stress variation 

experienced in an element during previous load conditions, such as load 

reversals.  In addition, a user modification capability is Incorporated 

so that the magnitudes of the basic criteria may be changed to allow 

certain effects to be studied.  The secondary stress effects and the 

loading history effects are physical measurements obtained from published 

test results.  The user modification capability is provided through 
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Flexural Failure - 
normal stress effect 
with a neutral axis 
within the cross section. 

• • • 

C » Compression 

T ■ Tension 

tuut 

Concrete 
Crushing 

Steel 
Fracture 

Bar Buckling and 
Concrete Crushing 
Simultaneously 

1 
Steel 
Fracture 

Fig.   B.2:     Flexural Failure Classification 

84 



Shear-Flexure Failure - 
combination of normal and 
shear stress effects with 
neutral axis within the section, 

C ■ Compression 

T = Tension 

DT = Diagonal Tension 

Cracking plus 
Crushing of 
Compression 
Zone 

Cracking Plus 
Dowel Splitting 

Sudden Crack 
through Section 

Sudden Crack 
through Section 

Cracking Plus 
Crushing of 
Compression 

Zone 

Detectio.. of  Irinclpal 
Diagonal  Crack 

Leading  to  Failure 

Cracking Plus 
Yielding of 

Web 
Reinforcement 

Detection of Principal 
Diagonal Crack Plus  Yielding 

of Web  Reinforcement 
Leading to Failure 

Fig.   B.3:     Shear-Flexure Failure Classification 
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Axial Force Failure - 
normal stress with 
neutral axis outside 
of the section 

C - Compression 

T - Tension 

Concrete 
Crushing 

Bar Buckling 
and Concrete 
Crushing 

Simultaneously 

Steel 
Fracture 

Flg. B.4: Axial Force Failure Classification 
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coefficients bullt Into the criteria with prescribed limits of variation. 

All of the test data used in the development of the failure criteria 

were obtained from published sources. Not all of the specific Information 

required was available; the deficiencies encountered are noted in the 

criteria developed. 

Since the failure being measured was usually associated with some form 

of fracture, the test data contained a variable amount of uncertainty 

Indicated by some degree of scatter in the plotted form. To represent these 

results in the form of a deterministic expression, a reasonable lower 

bound function was chosen in each case. 

The individual failure criterion is developed according to the 

following outline: 

1. Basic criterion for dominant stress, 

2. Effect of secondary stresses, 

3. Effect of loading history, 

4. User modification and 

5. Assumptions. 

The relationship in each case has the general form expressed by: 

(Specific criterion value) -  (computed model value.)   < 0 

The Individual expressions are also put in a dimenslonless form so that 

units are not involved  in their application.    The one exception to this 

rule is the strain criterion for concrete crushing in B.3.1.1.;  the 

constants in this expression are not dimenslonless,  even though the 

total expression is dimenslonless.    All modification coefficients are 

dimenslonless. 

87 



The essential details of all of the failure criteria are summarized 

In section B.3.4. 

B.'i.l    FLEXURAL FAILURE 

This failure category Is specified by a dominant normal stress state 

at a section In an element caused by bending.    Another distinction Is 

that the section has a point of zero strain within the dimensions of the 

cross section.    The failure modes which require a failure criteria are 

shown In Figure B.2. 

B.3.1.i    CONCRETE CRUSHING 

This failure mode Is the crushing of the concrete in an unconflned 

compression zone.    The concrete crushing may occur progressively from the 

outside surface Inward,  or it may occur In a sudden disintegration of a 

highly stressed region.    Since the concrete compressive stress-strain 

response has a negative slope beyond an ultimate stress point,  (see 

Appendix A, Fig.  A.I.),  a sufficiently large curvature  can cause a 

significant region of the compression zone to be within the negative 

slope influence.    At some point during an increasing load,   the bending 

moment resistance at the section reaches a peak value.    If there are no 

other regions which can carry any additional load increment, then the 

section will disintegrate suddenly.    This condition is characteristic 

of a singly reinforced beam when a compression failure occurs before the 

steel  yields in tension,   [B.34].    A discussion of this mode of behavior 

is given in references B.13,   18,  19   . 

Bei ore the disintegration state is reached,  the outer concrete may 

begin to crush locally.    If this happens, part of the moment resisting 
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capacity la lost at that section. The uniform cross section property 

Is lost, and a stress concentration effect Is created In the element. In 

addition, the spelling may be Irregular causing a loss In symmetry with 

respect to the plane of the structure loading. 

If there are steel bars In the compression zone of the concrete, 

crushing can still occur, but at a proportionally larger moment due to the 

load carried by the steel. After the crushing begins, the behavior of 

the steel bars in compression is uncertain without web reinforcement to 

contain them. 

The entire nonlinear response up to an ultimate state can be predicted 

by the element model since the complete stress-strain curves are included. 

However, after crushing of the outer layers of concrete, the related 

effects on the element cannot be predicted by the model. Consequently, 

the limit to the continuum model behavior is associated with the concrete 

crushing state at a critical section. The criterion developed is assumed 

to be valid for a compression zone with or without compression steel. 

The condition of initial crushing can be defined by a maximum strain 

value for unconfined concrete. The stress-strain curves in Figure B.7 

show that the maximum strain values decrease with increasing concrete 

strength f'. This characteristic is reflected in both e_0  and e-« 

strain points for unconfined concrete defined in appendix A, Flg. A.l, 

and by the equations: 

3.-K).002f' 
e50u X    f-iooo C iB'l) 

c 

and    e9n      -    1.8572 e,,.     - 0.8572 e CB.2) 20u 50u o 
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where f ■ ultimate concrete cylinder strength 

c      "   strain at ultimate stress - 0.002 
o 

A comparison of these two strain poiats are shown In Figs. B.5 and B.6 

as a function of the variable f'. On the same figures are experimental 

values of ultimate strain due to flexure. It appears that e,  is a 

realistic lower bound to the data for the higher strength values of 

f (f > 4000. psl). For the lower values of f, eCÄ Is too large: 
c  c c  50u 

a cut-off value for the ultimate strain at 0.0035 in/in  Is defined 

as a lower bound to all of the remaining data points. 

In tests of reinforced concrete beams In reference B.31 , flexural com- 

presslve strains on the outer surface of highly stressed regions reached 

the level of 0.004 in/in. before crushing. The f values were in the 
c 

range of 4000 - 6000 psl. 

(1) Basic failure criterion: defined by ultimate strain for concrete 

In compression: 

e.. - e < 0 (B.3) 
fl   c * 

3 + 0.002f'   < 
where efi " f - looo = 0-0035 c 

t      =    concrete compressive strain at critical   section. 

The function tf    Is shown as the lower limit curve on Figs.  5 and 6. 

(2) Axial force effect:    Included In the strain state. 

(3) Loading history effect:    no measurable difference for a few unloadlng- 

reloading cycles,  [24,  31,  33].        Basic stress-strain response 

function forms an envelope to the reloading paths.    Reversal of 

load produces tension which does not affect concrete compression 

strength. 
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(4)     Modification: 

(a) modification by coefficient: 

^ « C • 3 + 0'002 ^ < C0.0035) (B.4) 
ti    i   ft „ looo  " 

c 
(1. 1 ^ < 1.23) 

The modified ultimate strain is defined by the relationship: 

C.xdower limit function). The upper limit function Is 

defined by C ■ 1.23.  (The upper limit for C. Is computed 

on the basis of the evaluation of e,* corresponding to e20 

at f (maximum) > 8000 psl.) The upper limit function is 

also shown of Figs. B.5 and B.6. 

(b) Complete override Is not possible since there must be a 

limit to the strain In unconflned concrete as specified In the 

material input function. The suggested upper limit for 

failure is defined above. 

(5)  Assumptions: 

The concrete crushing criterion applies to members with or without 

compression steel. 

B.3.1.2  STEEL FRACTURE 

It is possible for the tensile reinforcement to fracture at a 

critical section before any other limit state is reached for the element. 

Consequently the fracture of the longitudinal steel caused by excessive 

tensile strain is considered to be a failure mode. 

The occurrence of a bar fracture In a member causes significant 

changes in the behavior: it creates a severe stress concentration In 
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the local region due Lo the lack of material continuity; this in turn 

causes additional cracking; in the concrete and shifts additional stress 

to the remaining steel bart. and the concrete in compression; if there are 

no other bars at the section, the fracture causes a complete discontinuity 

in the member.  In addition, the stress distribution in the fractured bar 

varies considerably from zero at the break point to some tensile value 

consistent with the unbroken bars at some distance away. 

For a two-dimensional model, all of the bars at the same distance 

from the reference axis have the same strain value; and since they are 

assumed to have the same material properties, the entire row fractures 

at the limit strain. The model can predict the strain value in the 

nonlinear range up to the limiting strain value. After the fracture point 

is reached, the model cannot predict the stress concentration effects 

or the stress distribution in the fractured bar. Therefore, the limit state 

is defined as the tensile fracture of any row of the steel reinforcing 

bars at the critical section of an element. 

The failure condition can be predicted on the basis of a strain value 

at the point on the cross section corresponding to the bar location. The 

element model defines this value directly.  Since the strain Is assumed to 

be uniform across the bar area, the limit strain of the uniaxial stress 

strain function for steel determines this value. The numerical values for 

the limit strains are shown in appendix A, Fig. A.4. 

(1) Basic failure criterion: defined by a limitlngstrain value for a 

steel bar in tension. (See appendix A, Fig. A.4) 

£:,„-£  < 0 CB.5) 
f.2 s - 
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where        e,.    ■   limiting tensile strain value 

e        =    tensile strain in longitudinal steel bar at a critical s 

section, 

(2)    Axial force effect:    included in the strain state. 

(3}    Loading history effect:    it appears that no information Is available 

on the question of the effect of a few  (2 or 3) Inelastic stress reversals 

on the fracture strain of reinforcing steel.    The behavior of reinforcing 

steel subjected to stress reversal is documented in   reference    B.32   .    If the 

number of stress reversals is small, simplifications may be introduced into 

the stress-strain function which Includes stress-reversal, basing the 

stress reversal curve on the original monotonlc stress-strain response. 

Others have utilized this concept to define an Idealized response for 

steel with stress reversal,  [B.1,8,29].    But none of these have indicated 

the fracture strength.    For simplification, it is assumed that the strain 

at fracture remains the same ar the monotonlc fracture point, regardless 

of the history of loading. 

(4) Modification: 

(a) no parameter modification Is necessary since the fracture 

point defined by the input function for the material is not 

altered in the failure criteria 

(b) no override is possible because the physical  limit of the 

stress-strain function for each material is defined Independent 

of the limit conditions for the model. 

(5) Assumptions: 

The limiting tensile strain value for the monotonlc stress-strain 

function for steel is a valid measure of the fracture strength including 

loading history effects. 
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Note; 

No special check is made for the case where bending In a singly 

reinforced concrete element occurs opposite to its reinforced strength. 

Clearly the concrece will crack in tension and form a discontinuity in 

the members at the section. Physically, the longitudinal bars could be 

positioned at any depth in a member. Whether or not there is sufficient 

resisting strength in the couple that is formed by the resulting concrete 

compression zone and the steel in tension depends on the moment to be 

resisted and the steel location at a section.  If the steel is near the 

tension surface, a larger moment can be resisted than for the case where 

the steel is near the compression surface.  In any case, the limitations 

provided by the concrete crushing (B.3.1.1) and steel fracture (B.3.1.2) 

are sufficient failure checks for any placement of the longitudinal steel. 

B.3.1.3 BAR BUCKLING AND CONCRETE CRUSHING SIMULTANEOUSLY 

This failure mode is the process of the bending out of reinforcing 

bars and the simultaneous crushing of concrete causing a sudden destruction 

of the compression zone. It is characteristic of a member with web rein- 

forcement (see Fig. B.9). 

This behavior has several distinguishing traits: 

a. The condition is not possible until the concrete outside of the 

compression bars has begun to crush; otherwise the bars are 

adequately restrained from buckling; 

b. The process Is most likely initiated by the expansion of the 

confined concrete near the ultimate stress level, effectively 

pushing the bars outward from their normal positions; 
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c. The bars are in a yielded „täte In compression, usually in the 

strain hardening range, at the time of buckling, [B.31]; 

d. Normal web reinforcement provides a restraint to displacement 

of the longitudinal bars at their co.itact points, thus providing 

a significant influence on the bending strength of a bar segment, 

[B.5,31]. 

The concrete expansion effect can be measured by its volumetric strain 

under compressive stress.  The lateral strain and volumetric strain of 

unconflned uniaxlally loaded concrete begin altered behavior at approximately 

80% of ultimate strength to the extent that near the ultimate stress the 

volumetric strain has changed signs from compression to tension, (see 

Fig. B.8).  This indicates that there is an expansion effect developed 

to push the bars out  of line, [B.28]. 

An important effect is the combination of yielded steel and crushed 

concrete cover which allows the failure process to occur. To see the 

possibility of this combined effect, the steel strains at strain hardening 

are compared to the range of strain at which unconflned concrete crushing 

occurs: 

Steel strain 
at strain hardening: 

Steel 

75    6Ü 
k .   k . 
si    si 
i    i 

Yield Strength 

50 A0 

sl 
l 

Strain: 
(in/in) 

I 

0.00 

I 

I 

0.01 

1 

1 

0.02 

l 

1 

0.03 

I 

Concrete strain 
at crushing 
(unconflned) 2000.<f <8000. 

— c— 

If some allowance is made for the fact that the normal strain at a section 

is larger at the surface than at the bar location, it is reasonable to 
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State that when the steel  enters the strain hardening range, the con- 

crete cover has reached  the crushing state. 

In reference B.5,  experiments were performed to study the behavior of 

the longitudinal steel  as affected by compressive stress and lateral 

reinforcement.    One conclusion reached was that  the size of the lateral 

stee]  bar was not important for providing restraint against the outward 

displacement of  the longitudinal bars;  a positive direct tensile connection 

as shown in Flg.   B.10 for a corner bar and an interior bar provide adequate 

restraint with tue smallest diameter lateral bars. 

In observations of  this failure form in tests,  it  is difficult to 

determine whether the concrete crushing or the steel buckling initiates 

the final destruction   [B.31], 

The element model  can predict the flexaral behavior of an element 

into the nonlinear material range.    However,   it cannot predict the behavior 

after the buckling of the compression bars at a critical section since 

the compression zone has been destroyed in the region of buckling.    Not 

only has a partial discontinuity been created at the section but the 

material uniformity along the length has been altered.    The limit state 

is defined to be  the buckling of compression bars stressed into the 

strain hardening range at  the critical section of an element.    The buckling 

condition for the outer layer of bars is considered sufficient for defining 

the limit state if  there are multiple layers involved since an unknown 

stress concentration and redistribution Is created due to this localized 

effect.     For  the member with web reinforcement,  the crushing of the outer 

concrete is not considered to alter the behavior significantly.    The 

element model Is assumed  to be valio up to the point of bar buckling. 
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f C2- 
2 

IT .     Et 
er CS/K)^ 

where 

f m crit leal eo 

The expression for predicting the eritleal stress for a uniform bar 

in simple coapression is used to measure the buckling condition. To 

Include the effect of the strain hardening state of the material, the 

tangent modulus property is included. The critical stress is defined by 

the following expression: 

(B.6) 

critical compressive stress in longitudinal reinforcing 

bar 

E      -    tangent modulus for steel at f 

S    ■    spacing of web reinforcement 

K    -    radius of gyration of the bar 

C- -    end restraint coefficient. 

C- ■ 1:  pinned end condition 

C- = 4:  fixed end condition 

This equation for f      was used in reference    B.5    as a basis for determining the 

spacing of web reinforcement in compression members; a value of CL = 2 was 

used. 

To implement this prediction, the model can compute the stress in a 

bar directly from a given strain state, and this value can be compared to 

a specific critical stress value.    One bar size and one material are 

representative of the entire layer checked. 

(1)    Basic failure criterion:    the relationship is based on the equation 

for critical stress of an initially straight uniform bar in simple com- 

pression : 
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er        a - (B.7) 

where 

2           Et 
t  _    *    C„n     *   „ defined  in equation 8.6; cr       z       cs/Kr 
f      «    convpressive stress in longitudinal reinforcing bar. 

B 

If C       is expressed  in terms of  the bar diameter D,  i.e. er r ' 

let k - D/4,  and if  the criterion is put in a dimensionless form,  the 

expression can be  re-written as; 

2 2       C 
c2 ' ie'(1)   • r -^ <B-8) 

(2) Axial force effect:  included in the strain state. 

(3) Loading history effect: since the stress-strain response is 

uniquely defined for unloading and reloading of steel bars, the 

check can be made at any point where a tangent modulus exists. 

The check is applied for a compressive stress state in the strain 

hardening range for any cycle of loading.  This is demonstrated 

in Fig. B.il. 

(4) Modification: 

a.    Modification by coefficient is made through the constant CL. 

This reflects the effects of various end restraints on the 

critical buckling stress.    The end restraint on the segment 

between web bars is a function of  the continuity of the bar 

and its freedom to deform.    The modified equation is: 

2 2      E 
c2 • ie '(f)   ■ r -1 ^0 (B-9) 

s 

(1.  < C2 < 4.) 
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C9 ~ 2 is used as the lower bound value. 

b. The user may choose to  coraplerely suppress this particular failure 

mode. By overriding this condition the member will maintain the 

original configuration of the steel for all stress-strain values. 

5. Assumptions: 

a.  The steel bar is initially straight and uniformly compressed; 

b-  The steel bar cannot buckle until it is stressed into the strain 

hardening range of behavior; 

c. All normal web reinforcement bars provide sufficient restraint 

to prevent lateral displacement of the longitudinal bars at the 

point of contact; 

d  Buckling of the longitudinal steel bars initiates the destruction 

of the compression zone at the critical section. 

0,3.1.4 STEEL FRACTURE 

This failure mode is the fracture of the longitudinal steel caused by 

exceKslve tensile strain. Since this fracture is unaffected by web rein- 

forcement in a member, the failure criterion is identical to the criterion 

developed in section B.3.1.2. 

B.3.2 SHEAR-FLEXURE FAILURE 

This category of failure defines the failure modes and criteria fo^ 

the effects of shear stress and normal stress acting in combination within 

a member. The failure modes which require a failure criteria are shown 

in Fig. B.3. 

The disMnct form of behavior for this type of failure is a diagonal 

crack which more or less follows a path normal to the principal tensile 
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stress trajectories In the member, Although several similar cracks may be 

initiated, one crack becomes dominant as the load Is Increased. If web 

reinforcement exists at the crack location, sudden material separation, Is 

prevented. 

The principal diagonal crack alters the member behavior by Introducing 

a discontinuity. The crack Is deep enough to disrupt the flexural 

characteristics within the element by reducing the size of the compression 

zone In a localized region. As a result, a redistribution of stresses is 

required to maintain equilibrium In the altered state, [B.10,21,35]. 

The discontinuous behavior of diagonal tension cracking in reinforced 

concrete members is associated with the weakness of concrete to principal 

tensile stress. The combination of normal tensile stress due to flexure, 

and shear stress due to variation in flexure can produce a more severe 

principal tensile state at a point than for conditions due to flexure 

alone. The tensile strength of concrete depends on local properties near 

the point of fracture In addition to the strain distribution, hence It 

is random in nature. This manifests itself in the unpredictability of 

specific locations and shapes of diagonal cracks. 

This is in contrast to the more predictable behavior In bending of 

the same type of member. In pure bending, the member strength depends on 

the compression zone properties of concrete and the tensile strength of 

the longitudinal steel. The resulting crack formation In the tensile zone 

is of only secondary significance because these cracks are stabilized by 

a uniform compression zone. 
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B.3.2.1. DETECTION OF PRINCIPAL DIAGONAL CRACK LEADING TO FAILURE 

If a diagonal crack occurs In a «ember without web reinforcement, 

there are three forms of behavior which describe the ultimate failure 

condition: 

a. The crack may propagate through the entire section; 

b. The crack may stop near a three dimensional compression zone, e.g., 

near a concentrated force oi.- a support point; the final failure 

form is a destruction of the reduced compression zone above the 

crack; 

c. The crack may propagate paralJel to the tensile steel bars 

effectively removing their contribution from the element load 

resistance. 

The ultimate failure conditions described by the crushing of the com- 

pression zone above the crack (b> and splitting along the longitudinal 

steel (c) are considered post-cracking behavior since they occur after the 

formation of the principal crack. 

The significant factors which affect the shear cracking behavior 

have been determined principally from test results. Those factors con- 

sidered most significant are: 

a. the longitudinal steel percentage, 

b. the tensile strength of concrete, 

c. the dimensions of the cross section in comparison to the length 

of the member, 

d. an axial force effect In addition to effects of lateral forces 

applied, 

e. the location of the region of maximum shear force with bending, 
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f. the anchorage and bond characteristics of the longitudinal steel, 

and 

g. the wav loads are applied to a member, directly or Indirectly. 

These factors can be divided into three main groups: the initial shape 

and reinforceinent of the member (a., c), material properties (b., f.), 

and the internal stress distribution (d., e., g.). The steel properties 

are not significant because the steel does not yield before the 

formation of the significant crack unless the flexural effects are dominant 

[B.101. The anchorage and bond characteristics of the longitudinal steel 

have the most Influerce on the post-cracking behavior. 

The limitations imposed on a continuum model are based on physical 

conditions which significantly alter the dominant normal stress behavior 

predicted by the model. The discontinuous effects of a diagonal crack and 

the resulting stress concentration at the tip of the crack are not included. 

Therefore, the limit state is considered to be the Initial formation of the 

principal diagonal crack. This precludes the consideration of the post- 

cracking behavior as limit states. 

The element model measures the normal stress distribution along the 

length of the element. Flexural and axial stress effects are both derived 

from the given strain state. To get a measure of the shear stress effects, 

only Indirect procedures are available: I.e.»the shear force can be com- 

puted to satisfy equilibrium for the normal stress resultants, and a 

nominal measure of the stresses can be based on an average distribution 

equivalent to a rhear force at a cross section. Consequently, the con- 

ditions causing the formation of a diagonal crack cannot depend upon 

stresses at a point (micro criterion); the true stress distribution is 

unknown. The crack prediction must be based on the nominal conditions 
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Indirectly related to the stresses predicted by the model. 

The Indirect measure usually appears as an empirical relationship 

between gross element propertien and nominal stress values. From an 

UL'ierstanding of the uncertainties associated with the formation of the 

principal diagonal crack, it is understandable that the relationships 

developed for their prediction are inaccurate for generalized conditions. 

The criterion developed in this section incorporates the variables observed 

to be significant in tests, while accounting for the uncertainties by 

providing lower bound functions.. 

There are two important considerations in defining the failure criterion 

for diagonal tension cracking:  (1) the equation for predicting the crackin;; 

strength of a member at a particular section for generalized conditions; and 

(2) the choice of a critical uection at which to apply the equation.  The 

prediction equation is discussed below; the application to a critical section 

is discussed in the implementation section (B.4). 

The form for the failure criterion is 

V (*)     v (x) , 
_£_ = _£_ = A + B£d: 
bd/F   /F /v 

c      c c 

V(x) 
M(x) 

(B.10) 

v = nominal measure of cracking stress at station x 

V - cracking force at a section x 

b ■ gross cross section width 

A,B = constants to be defined by data 

f ■ ultimate cylinder strength of concrete 

(JfT is a measure of tensile strength) 

p ■ longtudinal steel percentage ■ A /bd 
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VCx), M(x)    -   shear force and bending moment at a section x 

where v    Is computed 

d    -   effective depth of longitudinal steel. 

The form of this equation is Identical to that presented in reference    B.30  , 

and it has also been used in modified versions by others  [B.10,  17]. 

(Note:    other equations have been developed for computing v , e.g., 

references B.21,37  , but the fit of data is no better in general.)     'Hiis 

equation defines the nominal shear stress at the initial crack formation 

for a specific location x as a function of the element dimensions, 

reinforcement, and material properties  (p, b, d, f), and as a function of 

the Internal stress distribution (V(x)/M(x)) evaluated at the same location 

x.    The ratio (V/M) measures the effect of the shear force and the bending 

moment on the principal tensile stress, and hence on the crack formation. 

As a ratio, this Influence Is translated Into a distance measurement, 

from the point where M * 0 to the crack location. 

In order to evaluate the constants A and B consistent with these 

characteristics,   the V(x) and M(x) values must be known at the crack 

location,  in addition to the other factors.    The two basic parameters. 

V (x) 
F^x) - ~  and      F,Cx) - 1000 • -£^- • 

1 bd ^F Z /P~ c c 

V(x) 
M(x) 

can be evaluated for specific test cases for a wide variation in each 

factor.     The choice of a specific function to fit the data will establish 

A and B. 

The process chosen here Is to develop a basic equation using only the 

results from simple beam tests with concentrated loads since they represent. 
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In some form, all concentrated load conditions. In addition, there are 

many test results of this form available. This basic equation can then 

be checked against other conditions for more general applicability. The 

basic data is from reference 8.30 and is plotted In Flg. B.12.  The lower 

bound function Is shown on the figure and can be expressed as: 

F^x) - 1.5 + 3.5 F2Cx) < 3.0 (B.ll) 

where A - 1.5 and B <= 3.5 define the Intercept distance and the slope of 

the function. 

The method of load application is significant to the cracking 

strength particularly for small (a/d) values, where a is the shear span 

length, [B.12]. Such refinement  is not considered appropriate in this 

behavior prediction for lack of quantitative measurements and precise 

characterization of the physical loads actually applied.  It should be 

noted, however, that for most beam dimensions and loading (jAx)<0.3), 

the (a/d) values are larger, and the support and load effects are not 

significant in the region of the crack. 

The check of the lower bound function for the cases of simple beams 

wlLh uniformly distributed loads and for restrained and continuous beams 

with concentrattd loads are shown separately in Figs. B.13 and B.14, 

with reasonable acceptance. 

(1) Basic failure criterion: defined by the lower bound function 

developed: 

F^x) - FCx) <  0 (B.12) 

110 



-^ ^. 
,    1 1       , 

-^ 

6.0 

F9{x) = l000p 
Myr 

FIG. B. 12= DATA FOR INITIAL SHEAR CRACKING-(A) 
(PLOTTED DATA FROM REF. [B. 30] TABLES 
5-1,2,8,9,12.) 

Ill 



ww/ 

I 1 i I 
J^ 1 

^^7 

6.0 - 

5.0 

.0 1^° 4.0 

w >   3.0 

•I 

x 

H-     2.0 

1.0 

REF. [ B. 17]  ♦ 
REF. [B. 10 ]  o 

J. _1 \ L 

0.2 0.4 

FJxHOOO-p 

0.6 0.8 

Vd 

1.0 

MVfT 

FIG. B 13' DATA FOR INITIAL SHEAR  CRACKING-(B.) 
(PLOTTED DATA FROM REF. [B. 10, 17]). 

112 



1**1    t= 
/&r /&? /fb IS? 

1XF 

FJ)(x) = IOOOp-      ^_ 2 MVTT 

^ 

FIG. B. 14' DATA FOR  INITIAL  SHEAR CRACKING-(C) 
(PLOTTED DATA FROM REF. [B 30   TABLES 
5-3,4.) 

113 



where 

F.Cx) - 1.5 + 3.5 • F„Cx) < 3.0 
1 z   = 

F(x)  - V/bd/F 
c • 

F(x) is a nominal measure of the actual shear force at the critical 

section. 

The equation is considered applicable to any concentrated load 

condition for straight elements because the shear and moment functions 

can be broken down into equivalent simple beam segments when the sections 

of zero moment are located. Each segment of constant shear can be 

examined separately. 

C2) Axial forje effect:  this effect Is to measure the change in the 

basic criterion caused by the application of a tensile or compressive 

axial force. The effect is reflected in the alteration of the principal 

stress trajectories in the element. A compressive force causes a larger 

compression zone which forces the diagonal crack to bend over at a 

shallower depth from the tension f;ic<i.  A tensile force causes the 

compression zone to be smaller in depth resulting in a deeper and less 

inclined crack [B.10, .14]. 

The axial force Influence is not symmetric, particularly for larger 

values.  In the limiting case, where the axial force dominates the 

behavior, the effects of compression and tension are distinctly different. 

(This behavior is discussed in section B.3.3.). 

The choice for an equation to predict the axial force affect was 

made on the basis of the following points: 

a. It is easier and more efficient to work with strains and stresses 

from the model rather than stress resultants. 
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b. The equation should be numerically easy to apply and easy to 

modify by coefficients. 

c. Prediction of the axial force effects should be no less accurate 

In general application than the currently accepted design 

equations. 

The two alternative approaches to specifying a prediction equation 

were: (1) to use the current ACI Code equation (ACI Standard 318-71), 

V - 1.9/^ + 2500 p.  Vd 

«--(^) 
c  ^"'c  — *" „ „ r4h-d\ (B.13) 

or GO to develop a different equation and check It with code equation. 

The choice was made to develop a different equation for the following 

reasons: 

a. The ACI Code equation required the computation of stress 

resultants with no alternative; 

b. To modify the equation with a coefficient for the effect of N, 

and to determine lower and upper limits to its variation is 

difficult in the form presented by the Code equation. 

c. A different equation could be developed to more closely fit 

the desired qualities; 

d. There appeared to be sufficient published test results as a 

basis for the equation development and for testing its accuracy 

for both tension and compression effects. 

The initial form of the equation was based on a  form suggested in 

reference 3.10 , i.e., 

VcnCx)    f, t . , c „ ,„,, M    . NOO 

bd/F 
-  [1.5 + 3.5 F2Cx)]' [1 - a • ^^J (B.14) 
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The new terras are defined to be; 

V (x) « cracking shear force at section x with axial force en 

N(x) « axial force (tension position) 

a ■ coefficient for axial force effect. 

This equation was modified because N/V  did not correctly measure a 

change in the cracking strength for all cases. This is due to the fact 

that V  is influenced by N; i.e.,V  increases for N compression, en -^      ' en i-     « 

and decreases for N in tension. This equation is more reasonable if 

there is a fixed ratio for N/V  up to the cracking strength. 

The modified form uses V (x) as the reference force for N(x), 

where V (x) is the cracking force without an axial force effect; i.e., 
c 

Vcn(x) N(x) _cn  . [i#5 + 35 F (x)] . [lt  _ n^l] (B.15) 
bd/F - vc(x) c 

Noting that: 

Vc(x) 

1     hd/fr 2 
F.Cx) = — = 1.5 + 3.5 F„(x)      (equation B.ll) 

c 

and nondimensionalizlng N and V by the factor bd»'/fT, equation (B.15) can 

be written: 

V (x)    V (x) N(x)/bd/fT 

• [i. - a £ ] 
bd/F    bd/f7 V (x)/bd/Tr c       c c      c 

and finally, 

VcnW  .Vc(x)     . N(x) 
- a 

bd/F bd/F      bd/f7 
c       c c 

(B.16) 
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V        -   V 
Cn        C      «    a 

vc 

N 
Vc 

V V 
where v     « r-^   and v   = 

en      bd                 c 
c 

" bd  * 

V    (x) K( . 
For      F,(x)  *    -^ and    F,(x) «     'W 

J bd/F * bd/F" c c 

equation  (B,16)  ean be written: 

F3(x) = ^(x)  - o F4(x) (B.17) 

The limitation ($  3.0) shown In equation B.ll is omitted In the derivation, 

but it is to be Incorporated in the application. 

To evaluate the lower limit for the coefficient a, the equation 6.17 

was rearranged as shown below: 

(B.18) 

These two basic factors are evaluated for 

a series of tests and plotted in Flg. B.15. The lower limit function is 

shown as a s 0.10 for both tension and compression. A reasonable average 

value was chosen for the lower limit of a to avoid compounding lower 

bound features Into one equation. The basic equation for V was previously 

defined to be a lower bound fit of data. 

The f'nal justification for the implementation of the derived 

equation is based on its ability to predict the observed trends in test 

results. The derived equation was applied to the data in reference B.14 

which included tests for tension, compression and zero axial force. The 

results are shown in Flg. B.20 as a comparison with test values; on the 

same plot, the ACI Code equation is applied to the same set of data.  It 

is clear that the derived equation is as valid as the Code equation for 

measuring all three axial force effects. The data from reference B.l^ is 

shown to be Incorporated into the derivation of the coefficient a and 
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in checking the equation.  However, the data points on Flg. B.15 

corresponding to  reference R.1A were plotted after the equation check was 

made so that an Independent set of tests were ivailablc to make the 

check. 

In reference B.14 , a recommendation is nade to incorporate a cut-off 

value for large tensile forces; i.e. for N (tension) > A/f7 , V is to 
c   c 

be taken equal to zero.  It is argued that too much preliminary cracking 

caused by the tensile force destroys the shear resistance of the member. 

There is no such cut-off recommended with the failure criteria for the 

following reasons: 

a. All of the test results from reference E.1A do not support the 

recommeudatii ■ made; 

b. The recommendation Is based on one teit  for which the axial 

load was applied first, then the lateral load up to cracking, 

which is not realistic in an actual s:ructure; 

c. The plotted results of the derived eqntion in Figure. B.20 

did not indicate any trend to support the cut-off limit. 

The basic failure crineria with axial force effect is: 

F3(x) - F(x) < 0 (B.I9) 

where F-U) = F (x) - « • F,(x) 

F(x) = V(x)/bd/fT. 
c 

(3) Loading history effects:    the effect of reversal of load on the shear 

strength of members was tested and results presented In reference    B.2  .    "Vo 

conclusions are significant: 
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a. It was found that cracking load associated with a reverse load is 

of the same order of magnitude as the initial cracking load, even 

in the presence ol the initial diagonal crack; 

b. The repetition of a few high reverse loadings dues not cause a 

significant decrease in the strength of beams falling In shear 

as compared to monotonic loading failure. 

Therefore, it is assumed that the developed criteria is valid for any 

loading history consistent with a few cycles of loading effects. 

(A)  Modification: 

('O Modification by coefficient:  the suggested modification is made 

by increasing the slope of the basic function, equation B.ll, 

but not the point of intersection at F.. (x) = 1.5. The horizontal 

cut-off line can be defined by the intersection with F?Cx)=3/7 

for each slope. The form for modification is defined below: 

F*(x) = Al.5 + C3 ' F2(x)] < l(ZÜ£3)j _ a-F^Cx)    (B.20) 

and a (tension) = ^ = 0.025(4.-C^) 

a (compression) =  n    =  0.050(2.+C,) 

The range for coefficients C^ and C. are defined by: 

(3-5 ± C3 i IT > 

(0. < c4 < 1.) 

The upper limit function for NCx) = 0 is shown on Fig. B.12 

corresponding to CL = 35./6.; the upper limit for a and a are 

shown on Fig. B.15 for C, = 1.0. 

Cb) This failure criterion can be overridden since it is an indirect 

measure of a possible discontinuity. If it is ignored, the user 

120 



should realize that only the limitations of the flexural 

behavior are In effect,  and unrealistic behavior Is possible. 

(5)    Assumptions: 

The shear crack in a member with several shear spans  (see Flg. B.18), 

can be predicted by a criteria based on simple beam tests with or without an 

axial  force. 
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B.3.2.2     DETECTION OF PRINCIPAL IHAKONAL CRACK PLUS YIFLDINC; 0|-'  WHB 
milNFORCl-MtiNT  I.liADINC  TO I'Al MIKi:. 

If ;i dianoiial cruck occurs in a member with web reinrorci-ment, niatcrinl 

separation is prevented l)y the bars intersected by the crack. The only form 

of web reinforcement considered is the closed form normal to the longitudinal 

reinforcement. 

There are two behavior conditions which describe ultimate  failure states 

for a member with web reinforcement   fB.14,   30]: 

a. The diagonal crack may propagate through the member and cause sudden 

yielding of the web reinforcement at the crack  location; 

b. The diagonal crack may be contained by the web reinforcement  until 

crushing of the  reduced compression zone at an increased load 

before or after the web steel yields. 

In addition,   experimental   tests have  shown  that the  stress  in the web bars 

at the crack remain very small  until   the significant diagonal  crack forms 

[B.7,   9,   11,   25].    This is due to the fact  that brittle materials possess 

low extensibility  [B.36]. 

To predict shear-flexure  failure of a member with web reinforcement 

requires some measure of the behavior after the formation of the diagonal 

crack.     This means that the stress  in the web bars  intersected by the  crack 

must be predicted since subsequent behavior depends on the containment  of 

the crack by these bars.     However,   to predict the destruction of the com- 

pression  zone above the crack requires some knowledge of the size of the 

compression  zone and the  stress concentration effects  in the  localized 

region.    This  is beyond the model capability.    Therefore,  the  limit  state 

considered for this failure mode is the detection of the yielding of web 

reinforcement  in the range of the crack.     As  long as the web bars are below 
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the yield stress, the element is considered to be reliable.    Beyond the 

yielded state, the clement model is considered to be invalid, and the 

behavior cannot be accurately predicted. 

An approximate measure of the web steel stress can be computed 

indirectly.    The form of a prediction expression can be developed on the 

basis of measured stirrup strain during loading (See Fig.   B.16). 

Accordingly,  the assumed stress variation is zero up to the cracking load, 

and thereafter is a linear function of the applied load; 

a.,  a9 = constants e    = a. + a« P 

P    = cracking load a,  + a- P    =0 c 6 12c 

c    = web steel strain e    = a-  (P-P ) (B.31) v v       2 v      c^ y        J 

P = applied load 

If it  is also assumed that the shear force at a section is proportional  to 

the applied loads, then: 

C = constant e    = C (V-V ) v c v      f c 

v = shear at section e = =— 
v  E 

f = C (V-V ) (B.22) 
V = cracking shear at section 

f = web steel stress 
v 

E = linear modulus for web steel 

0'= OE=constant 

This corresponds to the same form accepted by the ACT code (318-71) and 

used by others in describing test results [B.14, 17, 30, 38]; i.e.: 

b = width of member v = rf  + v vy   c 

d = effective depth Av      V      Vc r = i— ;v = — ;v= — 
bs '   bd ' c  bd 

= total web ster" area at _ 
one section ■ A. x no.     f  = jr Cv-Vr) (B.23) 
of leas      D vy  OAy   c of legs 
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S = web bur  spacing 

f , V, V = defined above 
v     c 

If it is assumed that the crack is inclined to the longitudinal axis at 

approximately 45°, then (d/S) is a measure of the number of bars (n) 

crossing the crack; i.e., n = d/S. 

According to observations, all of the web bars crossing a physical 

crack are affected by that crack.  In addition, by the time the ultimate 

behavior state is reached, all of these bars can yield,     [B.14,7]. 

All of the bars at a crack should be included in the total effect, 

although each stress cannot be predicted independently. Therefore, the 

total area, (n.A ), is used in the equation. 

The average stress value for the web bars crossing a crack for any 

value of shear force is given by the equation for f (equation B.22) 

with C = S/dA ; i.e.: 
v 

f  = -rf- • (V-V ) 
v  dA  v  c 

v 

To introduce a lower bound measurement for yielding, the data plotted in 

Fig. B.17 is used. The lower limit function can be defined by the 

equation: 

vy  3 dA  v  c^ 
'       v 

which is valid at yielding conditions only. To introduce f at any stress 

state, the relationship must be made an inequality; i.e.: 

vy  3  v 

F  <i.f 
vy = 3  v 

f  > -r- • f : before yielding 

4 
f  4 •?■ * f : at or after yielding. 
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(1) Basic  fülure criterion : based on an equation to approximate the 

web steel  stress at a crack: 

fvy-f   fv^0 (ß-25^ 

where f     = yield stress in web reinforcing bars 

v      dA      v      cJ 

By introducing F(x) and F (x) defined in section B.3.2.1, and arranging 

the expression in a dimensionless form,  it can be re-written as shown below: 

1.   -f--^-^-lF(x)-FlW)<0. 
v       vy J 

An upper limit for the value of (V-V ), as recommended by the ACI Code, is 

not included in the criterion for two reasons: 

(a) Test results indicate that the upper limit is not consistent with 

physical behavior [B.14]; 

(b) A natural upper limit to failure for large values of (V-V ) is 

available through the flexural failure criteria . 

(2) Axial force effect: this is to measure the effect of an axial force, 

tension or compression, on the physical behavior of web reinforcement after 

cracking. Although data is scarce, reference B.1A provides results to Indicate 

that the contribution of web reinforcement to the total strength is approxi- 

mately independent of both the axial force and the ratio C-/") • These 

results were for limited va iitions of the parameters, but they form the 

basis for the criterion statement. The measure of the limit state for the 

shear strength of a member with web reinforcement as defined above is 

assumed to be valid for a moderate axial force, either compression or 

tension. It should be mentioned that some effect is already built into 
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the expression through V as defined by V  in section B.3.2.1. The 
' 0 en 

quantity that is assumed to remain unaffected is (V-VJ or (V-V, ). The 

expression which includes the axial force effect should be expressed as 

follows: 

v   vy 

where J;,(x) = V  / bd/fT 

3     en     f 

(5) Loading history eifects: the question is whether unloading or 

reversal of loading has any effect on the basic behavior of web reinforce- 

ment. The results presented in reference B.2 included behavior of beams with 

web reinforcement subjected to a few reversed loading cycles. The conclu- 

sion stated in section B.3.2.1, part 3 is applicable to this pdrt also; 

i.e., the repetition of a few reversed loadings does not cause a significant 

decrease in the strength of beams failing in shear as compared to monotonic 

loading failure. The criterion stated remains valid with load reversal. 

(4j Modification: 

(aj Modification by coefficient: the web strength criterion can be 

altered by a coefficient which changes the slope of the function 

shown in Fig. B.17; i.e.,: 

f  = C  • -£— •  (V-V ) 
vy   5  dA   v  c 

v 

The suggested relationship developed in reference B,1A to fit a 

specific set of data was defined to be: 

1.75rf  = v - v , where v = ultimate shear stress, 
vy   u   c       u 

This equation is plotted on Fig. B.17 and it appears to be a 

suitable upper bound. Accepting this function as defining an 
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upper bound value for C , the modified form of the criterion 

can be written as: 

l- ' C5 ' JT ' T1 '  [F(X) ' F3(x)1 - 0 (B,28) 
v   vy 

for (4/7 4 C5 < 4/3) 

and F (x) is included in its modified form F*(x), (equation B.20). 

(b) this criterion can be overridden since it is an indirect measure 

of the web steel stress. If it is ignored, only the flexural 

behavior limitations are in effect. 

(5) Assumptions: 

(a) Web bars are anchored sufficiently to insure yield strength 

development; 

(b) Element model remains valid after the formation of the  diagonal 

crack up to the web yield state; 

(c) The web steel strain is linearly related to the applied load after 

crack formation; 

(d) All bars affected by the crack yield at the measured limit state. 

B.3.3 AXIAL FORCE FAILURE 

The limit states developed in this failure category relate to the dis- 

continuities encountered in the behavior r " a member dominated by normal 

stresses caused predominantly by an axial force. The distinction between 

this category and the category for normal stress effects due to flexure 

(B.3.1.) is that the point of zero strain at a specified section falls out- 

side of the physical dimensions. Hence, the state of stress is either 

tension or compression over the entire cross section. The failure modes 

which require a failure criteria are shown in Fig. B.4. 
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The  failure modes arc  similar to those for flexure;   i.e., compressivc 

failure means either crushing of the concrete or the simultaneous crushing 

and bar buckling  in the critical compression zone;  and tensile failure is 

the fracture of longitudinal bars.    Therefore,  the same failure criteria 

are applicable.     In the axial  force category,   the secondary stresses are 

caused by bending.    But since both are included in the normal strain state, 

these secondary effects are automatically accounted for in the failure 

criteria.    This  is similar to the secondary axial  force effects automati- 

cally included in the  flcxural  failure criteria. 

B.3.3.1    CONCRETE CRUSHING 

Failure criterion:    same as section B.3.1.1. 

8.3.3.2    STEEL FRACTURE 

Failure criterion:    same as section B.3.1.2. 

B.3.3.3    BAR BUCKLING AND CONCRETE CRUSHING SIMULTANEOUSLY. 

Failure criterion:     same as section B.3.1.3. 

B.3.3.4    STEEL FRACTURE 

Failure criterion:    same as section B.3.L 2. 

B.3.4    SUMMARY OF  FAILURE CRITERIA 

Basic Form of Failure Criteria Expressions: 

[(Specific Criterion Value)  -(Computed Model Value)] 4 0 

All criteria are expressed in a dimensionless  form except for B.3.1.1 as 

noted. 

(B.3.1)  Flexural  Failure 

(B.3.1.1)  Concrete Crushing: e*     - e    4O 

e      - Compression 
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3 + 0.002f' 
£fl-    Cl  •[<£'  - 1000 C) ^ 0-0035 

(1.  =    Cj^ = 1.23) 

Default:    C.  ■ 1 

override:    not possible 

Note: Constants In the expression for 

e,. are not dlmenslonless, even though 

the total expression Is dlmenslonless. 

(B.3.1.2)  Steel Fracture: ef2 " es " 0 

e    - tension s 

ef2 " maximum strain value defined for 
stress-strain function. 

override:    not possible 

(B.3.1.3)   Bar Buckling and 
Concrete Crushing Simultaneously: 

2 E 

^2      16       V     -^F ; 

s 

f - compression 

(1. I C2 ^ 4.) 

Default:  C- = 2 

override: possible 

- 1.  I 0 

(B.3.1.4)   Steel Fracture: (Same as B.3.1.2) 

131 



(B.3.2) Shear-Flexure Failure 

(B.3.2.1) Detection of the Principal 
Diagonal Crack Leading to 
Failure: 

F*(x) - F(x) t  0 

F*(x) = {[1.5 + C„ • F_(x)] <. ^7 t/^}- a • F.(x) 
1A   ' ^  'A" 

(3.5 5 C3< 35./6.) 

Default: C » 3.5 

Tension: a = 0.025(4. - C.) 

Compression: a - 0.050(2. + C.) 

(0. - ^ ^ 1.) 

Def, ault: C4 = 0 

override: possible 

(B.3.2.2) Detection of the Principal 
Diagonal Crack Plus Yielding 
of the Web Reinforcement 
Leading to Failure: 

!' ~ c
5  ' f" T^'   [F(X) ~ F3(X)] = 0 

v   vy 

(4/7 *  C5 i  4/3) 

Default: C5 - 4./3 

override: possible 

(B.3.3) Axial Force Failure 

(B.3.3.1) Concrete Crushing:   (same as B.3.1.1) 
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(B.3.3.2) Steel Fracture:     (same as B.3.I.2) 

(B.3.3.3) Bar Buckling and 
Concrete Crushing 
Simultaneously:     (same as B.3.1.3) 

(B.3.3.4) Steel Fracture:     (same as B.3.1.2) 
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B.A IMPLEMENTATION 

The application of the failure criteria is made at an equilibrium 

configuration for the system and at critical sections within each element. 

The implementation defines the critical sections used and describes the 

general application procedure. 

B.4.1 ASSUMPTIONS 

In addition to the assumptions made fur the various failure criteria 

developed in B.3, the following assumptions are made with respect to the 

Implementation of these criteria: 

1. A single element has uniform reinforcement properties, In longi- 

tudinal and web steel, over the entire length.  If a member has 

variable reinforcement properties, e.g., a region with web rein- 

forcement and a region without, the failure criteria will be 

utilized more effectively by modeling the member with more than 

one element to reflect, at least approximately, the actual rein- 

forcement uniformity. 

2. General beam shear-flexure behavior can be effectively related 

to criteria based on simple beam test results by defining 

analogous segments within the model. The analogous segments, or 

shear spans, are defined by lengths measured from a point of zero 

moment to a nodal point, or from one nodal point to another. 

(Refer to Fig. B.18). 

3. The most probable section for failure in an element is defined by 

the critical section. A critical section is prescribed for each 

failure criteria, and only the critical sections In each element 
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are checked for failure. 

4. An element defined with a length less than the effective depth 

d will not be checked  for shear failure, but will be checked for 

flexural and axial failure. 

5. The equivalent distance from zero moment to the critical section 

at the crack location,  measured by  (V(x)/M(x))  in the shear 

cracking equation,  is  the same regardless of the superimposed 

uniform strain caused principally by an axial force. 

B.4.2    CRITICAL SECTIONS 

Critical sections arc the prescribed section locations where the various 

criteria are applied.    It represents,  in each case,  the most probable lo- 

cation for failure consistent with the model representation of the actual 

member and applied loading.    In applying the criteria, each element tested 

is treated as an independent unit, even though several elements may be 

joined together to represent a single physical member. 

Failure due to flexural and axial force effects are related to maximum 

normal strain states in an element.    For  the element model used,  this  state 

occurs at one of the end sections.    The end sections are then the critical 

sections for these two criteria,  defined  in B.3.1 and B.3.3.     There Is one 

exception to this definition:    when an element has one or both nodal points 

located at a junction of two members normal to each other,  e.g.,a horizontal 

member intersecting a column member,  the critical section is defined at the 

face of the normal member rather than at the nodal point.    This can be seen 

in Fig. B.18 at nodal point a and d. 

Failure due to shear effects, with criteria defined in B.3.2,  is 

detected by an indirect measure that includes material properties. 
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dimensions of the cross section,  and a measure of shear span length.    The 

critical section Is defined by a conservative estimate of the location of 

the mid depth of the complete diagonal crack within the shear span .    This 

location is specified for all shear span lengths in Flg. B.19. 

Others have suggested locations for the critical section in a shear 

span.    The following list shows a reference with the critical location used 

which agreed with the data from the corresponding tests: 

Reference Critical Section Location 
X      (a I 2d) cs 

B.10 0.5 a 

B.17 0.6 a (a - 2d for a > 5d) 

B.27 0.5 a 

B.30 a - d 

All tests involved were with simple beam conditions, and the cracking stress 

equations used in each case were of a similar basic form to the one used In 

the criteria. 

Within a shear span associated with a simple beam structure with a 

single concentrated force, the lowest critical cracking stress defined by 

the criteria Is at the point of the load. That section is the most con- 

servative location for the critical section. However, it is not realistic 

to use this section because the crack has to have some room to form before 

the load is encountered. Therefore, the critical section is usually chosen 

some distance from the point of the load. If the crack is assumed to have 

a projected length equal to d, then (a - d) is the most conservative realis- 

tic choice. Test observations indicate that the location is actually closer 
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to Che middle of Che span a. The locaclon used with a gpeclflc cracking 

equaclon rnuaC be balanced wich Che form and conservaClveneas of the equation 

Itself Co produce realistic and conservative results. This Is the final 

decision basis. The location chosen for the criteria Is a reasonable balance 

between the most conservative location and the observed locations.  It has 

also been checked with a variety of test data and compared with the ACI 

Code equation. These results are shewn in Flg. B.20. 

A summary of the locations for critical sections associated with each 

failure criteria is shown below: 

Failure Criteria 

1.  Flexural failure: 

2.  Shear-flexure failure: 

3.  Axial force failure: 

Critical Sections for an element 

End sections, at the nodal points, 
or at Che face of an intersecting 
member. 

Section at the mid-depth of the 
diagonal crack - defined In Fig. 
B.19. 

(same as for flexural failure) 

B.4.3 CHECKING PROCEDURE 

The two general elemenC states, characterized by the internal stress 

distribution, are represented by element (a - b) and elemenC (b - c) in 

Flg. B.18.  In Che first, there is a zero moment condition within the 

element; the second has no such condition. 

In the first element (a - b), the flexural and axial force checks can 

be made at the critical sections for the element as defined previously. 

However, the shear check must be made for both shear spans defined; I.e. 

from the zero moment section to each nodal point (shear spans 1 and 2 in 
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the figure). Therefore, the zero moment section must be located. It la 

defined a« the section with e uniform attain distribution. 

In the second element state, (b - c), the flexural and axial criteria 

are applied aa before, while the shear criteria can be applied to the given 

state directly. The application of the shear criteria to this element Is 

equivalent to applying these expressions to a shear span defined by the 

length (g - c) in Fig. B.18. The length (g - c) is referred to as the 

equivalent shear span for element (b - c), and it has the approximate value 

given by: 

M}, - bending moment at b 

\ 
V.  - shear in (b - c) L  - TT2- + L. 
be gc  V.    l)C 

L - length 

When a single member is composed of several elements, the question 

arises concerning the adequacy of an Independent check of each element to 

represent the behavior of the whole member. In other words, is It possible 

that the total member might fall if It la  modeled as a single element, 

whereas the Independent checking of component elements might not detect 

failure? It has been demonstrated by physical testing of restrained beams 

that the most likely region for cracking la in the span with the largest 

shear force, such as element (c - d); (reference B.26 ). 

To verify that the criteria expressions would be consistent with this 

behavior, an Idealized analysis was performed using a member composed of two 

elements subjected to the possible combinations of bending moment in each 

span, e.g. the two spans (a - b) and (b - c). The independent checks 

produced realistic failure predictions. The results showed that the cracking 
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is less likely in (b - c) and more likely In an adjacent span with largar 

shear force (a - b) as the moments at b and c approuch equality. It was 

also shown that if the bending moments M , M. and M define a linear function 

with x, and M "0, then the failure of element (b - c) would be Identical 

to the failure of the total member (a - c) provided the same critical section 

is used, and provided both spans have identical properties. Therefore, 

checking each element of a member Independently will accurately reflect 

the physical behavior of the total member; i.e.» the most likely failure 

region will be detected first. 

The general procedure used in checking for failure is indicated in the 

flow sequeace shown in Flg. B.21, where, 

critical strain values   - strain values at the extremities of the 
end sections of an element; 

section of zero moment   - section with a uniform strain state; 

equivalent shear span   * distance from the zero moment section 
(outside of the element length) to the 
section of maximum moment. 

Flexural failure checks (B.3.1) are required at both ends rather than 

Just at the end with the maximum moment since an element may be reinforced 

unsymmetrically with respect to number, diameter, and location of longi- 

tudinal bars. By the same reasoning, the axial force failure checks 

(B.3.3) are also made at both ends of an element. 
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Compute Critical 
Strain Values 

for an element. 

Compute the 
two separate 
shear spans 
for the element 
(see Flg. B.18) 

Compute the 
equivalent 
shear span 

for the element. 

Failure 
Decision 

Check: 
B.3.1 Criteria - 

at critical sections 
for both ends. 

B.3.2 Criteria - 
at critical section for 
shear spans defined. 

Flg. B.21; General Sequence for Implementation of the Failure Criteria 
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NUTATION 

b ■ gross cross section width 

d »> effective depth of longitudinal reinforcing bars 

h ■ total depth of cross section 

s •» spacing of web reinforcing bars 

1 ■ length of shear «pan for checking diagonal cracking failure 

a ■ shear span measured from zero moment to a concentrated load 

D « reinforcing bar diameter 

k " radius of gyration of  reinforcing bar 

x - distance to diagonal crack Intersection with tension steel 

x ■ distance to critical section from minimum moment cs 

A =• area of reinforcing bars as a group 
s 

A, ■ area of a single reinforcing bar 

A ■ A. x number of legs - effective area of web reinforcement bars 

(Closed stirrups:  A    » 2 x A. ) 

p «A /bd    =    Longitudinal steel pirceutage 
8 

r    - A /bs > dlmensionless measure Oi web reinforcement area 

n    • d/s ■ number of bars crossing a-crack (at 45°) 

e0„  » unconfined concrete strain at 0.20 f beyond the ultimate strain 20u c 

ec0  ■ unconfined concrete strain at 0.50 f* beyond the ultimate strain 

ef,  •= strain In concrete at crushing in compression 

e*.  * strain in concrete at crushing with modification coefficient 
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£2 

strain In concrete In compression 

strain In longitudinal steel at fracture in tension 

strain in longitudinal steel In tension 

strain in web reinforcing bar 

c 

cr 

vy 

ultimate cylinder strength of concrete 

a measure of the tensile strength of concrete 

stress in longitudinal reinforcing bar 

compressive stress in longitudinal reinforcing bar at critical 

condition 

stress in web reinforcing bar 

stress in web reinforcing bar at yield in tension 

v 

vc 

V en 

Et 

V(x) 

Vc(x) 

VcnW 

V/bd nominal measure of shear stress 

V/bd   -   nominal measure of cracking shear stress without axial 

force 

Vrn/bd en nominal measure of cracking shear stress with axial 

force (tension or compression) 

tangent modulus for steel stress-strain response 

V -    shear force at section x 

V -    cracking shear force at section x without axial force 

Vcn - cracking shear force at section x with axial force 

axial force in an element (tension or compression) 

P 

P 

measure of applied load 

measure of applied load at diagonal cracking 
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M(x)    -    M    •    bending niomem; at section x 

F(x)    -    V(x)/bdv'fr 

FAx) -    V   {x)/bd/fr 
ICC 

F2(x) -    1OO0. ]Kl_ I   V(x)1 

/fT |  M(x)| c   ' ' 

F-(x) -    V     W/hd/F 
j en c 

F*(x) »    V     (x)/bdr^,     »    measure with modification coefficient 
J en c 

F, =    N/bd/f7   ■    nondlmenslonal axial force 
4 c 

C.,   C„,  C-,   C,, C,.    »    modification coefficients (range of values defined 

with criteria) 

o =•    coefficient for axial, force effect on shear-flexure failure 

at        -    0.025(4. - C4) 

o «    0.050(2. + C.) 
C H 
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APPENDIX C 

BIBLIOGRAPHY 

This bibliography contains the results of an extensive literature 

search. The purpose Is to document the important sources of Information 

related to the development of a mathematical model to study the complete 

behavior of a reinforced concrete skeletal structure top to the state of 

collapse. The literature associated with the total scope of work Is so 

extensive that only those sources related to the development of the 

basic model are Included. 

The organization of the entries Is by basic subject division, as 

shown below. 

C.l Material Behavior 
C.l.l Concrete 
C.l.2 Bond and Anchorage 
C.l.3 Reinforcing Steel 

C.2 Element Behavior 
C.2.1 Model 
C.2.2 Strength Properties 

C.3 System Behavior 

C.4 Solution Process 

C.5 Selected Books 
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